A correct estimation of both direction and intensity of wind velocity is fundamental for controlling an autonomous sail-boat. This kind of estimation has to be performed in a harsh environment considering the direct exposition of the sensor to salt, fog, and to any variable weather conditions. An important feature is represented by the sensor size, which has to be small compared to the drone size. Costs have to be optimized with respect to the overall small budget involved in the construction of the drone. Finally, extensive use on drones or in large sensor networks should be greatly advantaged by an easy substitutability in the case of accidental damage or system loss, an eventuality which is difficult to be completely avoided for large scale, prolonged monitoring activities. In this work authors propose a low cost ultrasonic planar anemometer with a very interesting price to performance ratio which is obtained by introducing a simple, original and innovative Arduino based architecture. Preliminary design and the results of calibration will be described, followed by testing activities performed on a low-speed large section wind tunnel, available at University of Florence supported by simple but effective computational fluid dynamic (CFD) simulations.

References

1.
Howden
,
S.
,
Gilhousen
,
D.
,
Guinasso
,
N.
,
Walpert
,
J.
,
Sturgeon
,
M.
, and
Bender
,
L.
,
2008
, “
Hurricane Katrina Winds Measured by a Buoy-Mounted Sonic Anemometer
,”
J. Atmos. Oceanic Technol.
,
25
(
4
), pp.
607
616
.
2.
Pao
,
L. Y.
, and
Johnson
,
K. E.
,
2009
, “
A Tutorial on the Dynamics and Control of Wind Turbines and Wind Farms
,”
American Control Conference
(
ACC
), St. Louis, MO, June 10–12, pp.
2076
2089
.
3.
Tan
,
K.
, and
Islam
,
S.
,
2004
, “
Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System Without Mechanical Sensors
,”
IEEE Trans. Energy Convers.
,
19
(
2
), pp.
392
399
.
4.
Pindado
,
S.
,
Cubas
,
J.
, and
Sorribes-Palmer
,
F.
,
2015
, “
On the Harmonic Analysis of Cup Anemometer Rotation Speed: A Principle to Monitor Performance and Maintenance Status of Rotating Meteorological Sensors
,”
Measurement
,
73
, pp.
401
418
.
5.
Le Bars
,
F.
, and
Jaulin
,
L.
,
2013
, “
An Experimental Validation of a Robust Controller With the VAIMOS Autonomous Sailboat
,”
Robotic Sailing 2012
,
Springer
,
Berlin
, pp.
73
84
.
6.
Cokelet
,
E. D.
,
Meinig
,
C.
,
Lawrence-Slavas
,
N.
,
Stabeno
,
P. J.
,
Mordy
,
C. W.
,
Tabisola
,
H. M.
, and
Cross
,
J. N.
,
2015
, “
The Use of Saildrones to Examine Spring Conditions in the Bering Sea
,”
OCEANS-MTS/IEEE Washington
, Washington, DC, Oct. 19–22, pp.
1
6
.
7.
Friebe
,
A.
, and Haug, F., 2015,
Robotic Sailing
, Springer, New York.
8.
Pedrotti
,
M. L.
,
Petit
,
S.
,
Elineau
,
A.
,
Bruzaud
,
S.
,
Crebassa
,
J. C.
,
Dumontet
,
B.
, and
Cózar
,
A.
,
2016
, “
Changes in the Floating Plastic Pollution of the Mediterranean Sea in Relation to the Distance to Land
,”
PloS One
,
11
(
8
), p.
e0161581
.
9.
Eriksen
,
M.
,
Lebreton
,
L. C.
,
Carson
,
H. S.
,
Thiel
,
M.
,
Moore
,
C. J.
,
Borerro
,
J. C.
, and
Reisser
,
J.
,
2014
, “
Plastic Pollution in the World's Oceans: More Than 5 Trillion Plastic Pieces Weighing Over 250,000 Tons Afloat at Sea
,”
PloS One
,
9
(
12
), p.
e111913
.
10.
Law
,
K. L.
,
Morét-Ferguson
,
S. E.
,
Goodwin
,
D. S.
,
Zettler
,
E. R.
,
DeForce
,
E.
,
Kukulka
,
T.
, and
Proskurowski
,
G.
,
2014
, “
Distribution of Surface Plastic Debris in the Eastern Pacific Ocean From an 11-Year Data Set
,”
Environ. Sci. Technol.
,
48
(
9
), pp.
4732
4738
.
11.
Rathour
,
S. S.
,
Kato
,
N.
,
Senga
,
H.
,
Tanabe
,
N.
,
Yoshie
,
M.
, and
Tanaka
,
T.
,
2016
, “
An Autonomous Robotic Platform for Detecting, Monitoring and Tracking of Oil Spill on Water Surface
,”
ASME
Paper No. OMAE2016-54714.
12.
Klinck
,
H.
,
Fregosi
,
S.
,
Matsumoto
,
H.
,
Turpin
,
A.
,
Mellinger
,
D. K.
,
Erofeev
,
A.
, and
Stelzer
,
R.
,
2016
, “
Mobile Autonomous Platforms for Passive-Acoustic Monitoring of High-Frequency Cetaceans
,”
Robotic Sailing 2015
,
Springer International Publishing
,
New York
, pp.
29
37
.
13.
Stelzer
,
R.
, and
Pröll
,
T.
,
2008
, “
Autonomous Sailboat Navigation for Short Course Racing
,”
Rob. Auton. Syst.
,
56
(
7
), pp.
604
614
.
14.
Pêtres
,
C.
,
Romero-Ramirez
,
M. A.
,
Plumet
,
F.
, and
Alessandrini
,
B.
,
2011
, “
Modeling and Reactive Navigation of an Autonomous Sailboat
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
3571
3576
.
15.
Abril
,
J.
,
Salom
,
J.
, and
Calvo
,
O.
,
1997
, “
Fuzzy Control of a Sailboat
,”
Int. J. Approximate Reasoning
,
16
(
3
), pp.
359
375
.
16.
Xiao
,
K.
,
Sliwka
,
J.
, and
Jaulin
,
L.
,
2012
, “
A Wind-Independent Control Strategy for Autonomous Sailboats Based on Voronoi Diagram
,”
14th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
(
CLAWAR
), Paris, France, Sept. 6–8, pp. 109–123.https://hal-ensta-bretagne.archives-ouvertes.fr/hal-00628434/document
17.
Han
,
D.
,
Kim
,
S.
, and
Park
,
S.
,
2008
, “
Two-Dimensional Ultrasonic Anemometer Using the Directivity Angle of an Ultrasonic Sensor
,”
Microelectron. J.
,
39
(
10
), pp.
1195
1199
.
18.
Nakai
,
T.
,
Iwata
,
H.
,
Harazono
,
Y.
, and
Ueyama
,
M.
,
2014
, “
An Inter-Comparison Between Gill and Campbell Sonic Anemometers
,”
Agric. For. Meteorol.
,
195–196
, pp. 123–131.
19.
Allotta
,
B.
,
Pugi
,
L.
,
Bartolini
,
F.
,
Ridolfi
,
A.
,
Costanzi
,
R.
,
Monni
,
N.
, and
Gelli
,
J.
,
2015b
, “
Preliminary Design and Fast Prototyping of an Autonomous Underwater Vehicle Propulsion System
,”
Proc. Inst. Mech. Eng. Part M
,
229
(
3
), pp. 248–272.
20.
Allotta
,
B.
,
Costanzi
,
R.
,
Gelli
,
J.
,
Pugi
,
L.
, and
Ridolfi
,
A.
,
2015
, “
Design of a Modular Propulsion System for MARTA AUV
,”
OCEANS MTS/IEEE GENOVA
, Genoa, Italy, May 18–21, pp. 1–7.
21.
Carnevale
,
M.
,
Facchinetti
,
A.
, and
Rocchi
,
D.
,
2017
, “
Procedure to Assess the Role of Railway Pantograph Components in Generating the Aerodynamic Uplift
,”
J. Wind Eng. Ind. Aerodyn.
,
160
, pp.
16
29
.
22.
Siano
,
D.
,
Viscardi
,
M.
,
Dionisi
,
F.
, and
Napolitano
,
P.
,
2013
, “
Numerical Modelling and Experimental Evaluation of an High Speed Pantograph Aerodynamic Noise
,”
Comput. Math. Autom. Mater. Sci.
,
22
, pp.
86
92
.http://www.wseas.us/e-library/conferences/2014/CambridgeUSA/MATHIMA/MATHIMA-12.pdf
23.
Sueki
,
T.
,
Ikeda
,
M.
, and
Takaishi
,
T.
,
2009
, “
Aerodynamic Noise Reduction Using Porous Materials and Their Application to High Speed Pantographs
,”
Q. Rep. RTRI
,
50
(
1
), pp.
26
31
.
24.
Pugi
,
L.
, and
Allotta
,
B.
,
2012
, “
Hardware-in-the-Loop Testing of On-Board Subsystems: Same Case Studies and Applications
,”
Railway Safety, Reliability and Security: Technology and Systems Engineering
, IGI-GLOBAL, Hershey, PA, pp.
249
280
.
25.
Nakai
,
T.
, and
Shimoyama
,
K.
,
2012
, “
Ultrasonic Anemometer Angle of Attack Errors Under Turbulent Conditions
,”
Agric. For. Meteorol.
,
162–163
, pp.
14
26
.
26.
Del Valle
,
M. P.
,
Castelan
,
J. A. U.
,
Matsumoto
,
Y.
, and
Mateos
,
R. C.
,
2007
, “
Low Cost Ultrasonic Anemometer
,”
Fourth International Conference on Electrical and Electronics Engineering
(
ICEEE
), Mexico City, Mexico, Sept. 5–7, pp.
213
216
.
27.
Augusti
,
G.
,
Spinelli
,
P.
,
Borri
,
C.
,
Bartoli
,
G.
,
Giachi
,
M.
, and
Giordano
,
S.
,
1995
, “
The C.R.I.A.C.I.V. Atmospheric Boundary Layer Wind Tunnel
,”
Ninth International Conference on Wind Engineering (ICWE)
, New Delhi, India, Jan. 9–13, pp. 610–616.
28.
Frank
,
J. M.
,
Massman
,
W. J.
,
Swiatek
,
E.
,
Zimmerman
,
H. A.
, and
Ewers
,
B. E.
,
2016
, “
All Sonic Anemometers Need to Correct for Transducer and Structural Shadowing in Their Velocity Measurements
,”
J. Atmos. Oceanic Technol.
,
33
(
1
), pp.
149
167
.
29.
Allotta
,
B.
,
Costanzi
,
R.
,
Meli
,
E.
,
Pugi
,
L.
,
Ridolfi
,
A.
, and
Vettori
,
G.
,
2014
, “
Cooperative Localization of a Team of AUVs by a Tetrahedral Configuration
,”
Rob. Auton. Syst.
,
62
(8), pp. 1228–1237.
You do not currently have access to this content.