In this study, the design of a smooth robust velocity observer for a class of uncertain nonlinear mechatronic systems is presented. The proposed velocity observer does not require a priori knowledge of the upper bounds of the uncertain system dynamics and introduces time-varying observer gains for uncertainty compensation. Practical stability of the velocity observation error is ensured via Lyapunov-type stability analysis. Experimental results obtained from Phantom Omni haptic device are presented to illustrate the performance of the proposed velocity observer.
Issue Section:
Technical Brief
References
1.
Su
, Y. X.
, Zheng
, C. H.
, Mueller
, P. C.
, and Duan
, B. Y.
, 2006
, “A Simple Improved Velocity Estimation for Low-Speed Regions Based on Position Measurements Only
,” IEEE Trans. Control Syst. Technol.
, 14
(5
), pp. 937
–942
. 2.
Arimoto
, S.
, Parra-Vega
, V.
, and Naniwa
, T.
, 1994
, “A Class of Linear Velocity Observers for Nonlinear Mechanical Systems
,” Asian Control Conference
, Tokyo, Japan, July 27–30, pp. 633
–636
.3.
Abdessameud
, A.
, and Khelfi
, M. F.
, 2006
, “A Variable Structure Observer for the Control of Robot Manipulators
,” Int. J. Appl. Math. Compt. Sci.
, 16
(2
), pp. 189
–196
.https://eudml.org/doc/2077844.
de Wit
, C. C.
, and Slotine
, J.
, 1991
, “Sliding Observers for Robot Manipulators
,” Automatica
, 27
(5
), pp. 859
–864
.5.
Astolfi
, A.
, Ortega
, R.
, and Venkatraman
, A.
, 2010
, “A Globally Exponentially Convergent Immersion and Invariance Speed Observer for Mechanical Systems With Non-Holonomic Constraints
,” Automatica
, 46
(5
), pp. 182
–189
.6.
Namvar
, M.
, 2009
, “A Class of Globally Convergent Velocity Observers for Robotic Manipulators
,” IEEE Trans. Autom. Control
, 54
(8
), pp. 1956
–1961
.7.
Romero
, J. G.
, and Ortega
, R.
, 2015
, “Two Globally Convergent Adaptive Speed Observers for Mechanical Systems
,” Automatica
, 60
, pp. 7
–11
.8.
Choi
, J.-H.
, Misawa
, E. A.
, and Young
, G. E.
, 1999
, “A Study on Sliding Mode State Estimation
,” ASME J. Dyn. Syst. Meas. Control
, 121
(6
), pp. 255
–260
.9.
Davila
, J.
, Fridman
, L.
, and Levant
, A.
, 2005
, “Second-Order Sliding-Mode Observer for Mechanical Systems
,” IEEE Trans. Autom. Control
, 50
(11
), pp. 1785
–1789
.10.
Dawson
, D. M.
, Qu
, Z.
, and Carroll
, J. C.
, 1992
, “On the State Observation and Output Feedback Problems for Nonlinear Uncertain Dynamic Systems
,” Syst. Control Lett.
, 18
(2
), pp. 217
–222
.11.
González
, I.
, Salazar
, S.
, and Lozano
, R.
, 2014
, “Chattering-Free Sliding Mode Altitude Control for a Quad-Rotor Aircraft: Real-Time Application
,” J. Intell. Rob. Syst.
, 73
(1–4), pp. 137
–155
.12.
Ramirez-Rodriguez
, H.
, Parra-Vega
, V.
, Sanchez-Orta
, A.
, and Garcia-Salazar
, O.
, 2014
, “Robust Backstepping Control Based on Integral Sliding Modes for Tracking of Quadrotors
,” J. Intell. Rob. Syst.
, 73
(1–4), pp. 51
–66
.13.
Walcott
, B.
, and Zak
, S.
, 1987
, “State Observation of Nonlinear Uncertain Dynamical Systems
,” IEEE Trans. Autom. Control
, 32
(2
), pp. 166
–170
.14.
Xiong
, Y.
, and Saif
, M.
, 2001
, “Sliding Mode Observer for Nonlinear Uncertain Systems
,” IEEE Trans. Autom. Control
, 46
(12
), pp. 2012
–2017
.15.
Xian
, B.
, de Queiroz
, M.
, Dawson
, D.
, and McIntyre
, M.
, 2004
, “A Discontinuous Output Feedback Controller and Velocity Observer for Nonlinear Mechanical Systems
,” Automatica
, 40
(4
), pp. 695
–700
.16.
Atassi
, A. N.
, and Khalil
, H. K.
, 1999
, “A Separation Principle for the Stabilization of a Class of Nonlinear Systems
,” IEEE Trans. Autom. Control
, 44
(9
), pp. 1672
–1687
.17.
Chen
, J.
, Behal
, A.
, and Dawson
, D.
, 2008
, “Robust Feedback Control for a Class of Uncertain MIMO Nonlinear Systems
,” IEEE Trans. Autom. Control
, 53
(2
), pp. 591
–596
.18.
Teel
, A.
, and Praly
, L.
, 1994
, “Global Stabilizability and Observability Imply Semi Global Stabilizability by Output Feedback
,” Syst. Control Lett.
, 22
(2
), pp. 313
–325
.19.
Dasdemir
, J.
, and Zergeroglu
, E.
, 2015
, “A New Continuous High-Gain Controller Scheme for a Class of Uncertain Nonlinear Systems
,” Int. J. Robust Nonlinear Control
, 25
(1)
, pp. 125
–141
.20.
Lewis
, F.
, Dawson
, D.
, and Abdallah
, C.
, 2004
, Robot Manipulator Control: Theory and Practice
, Marcel Dekker
, New York
.Copyright © 2018 by ASME
You do not currently have access to this content.