This paper studies a systematic linear matrix inequality (LMI) approach for controller design of nonlinear chaotic power systems. The presented method is based on a Takagi–Sugeno (TS) fuzzy model, a double-fuzzy-summation nonparallel distributed compensation (non-PDC) controller, and a double-fuzzy-summation nonquadratic Lyapunov function (NQLF). Since time derivatives of fuzzy membership functions (MFs) appear in the NQLF-based controller design conditions, local controller design criteria is considered, and sufficient conditions are formulated in terms of LMIs. Compared with the existing works in hand, the proposed LMI conditions provide less conservative results due to the special structure of the NQLF and the non-PDC controller in which two fuzzy summations are employed. To evaluate the effectiveness of the presented approach, two practical benchmark power systems, which exhibit chaotic behavior, are considered. Simulation results and hardware-in-the-loop illustrate the advantages of the proposed method compared with the recently published works.

References

1.
Zhou
,
Y.
,
Hua
,
Z.
,
Pun
,
C.-M.
, and
Chen
,
C. L. P.
,
2015
, “
Cascade Chaotic System With Applications
,”
IEEE Trans. Cybern.
,
45
(
9
), pp.
2001
2012
.
2.
Alfi
,
A.
,
Khooban
,
M. H.
, and
Abadi
,
D. N. M.
,
2013
, “
Control of a Class of Non-Linear Uncertain Chaotic Systems Via an Optimal Type-2 Fuzzy Proportional Integral Derivative Controller
,”
IET Sci. Meas. Technol.
,
7
(
1
), pp.
50
58
.
3.
Ginarsa
,
I. M.
,
Soeprijanto
,
A.
, and
Purnomo
,
M. H.
, 2013, “
Controlling Chaos and Voltage Collapse Using an ANFIS-Based Composite Controller-Static Var Compensator in Power Systems
,”
Int. J. Electr. Power Energy Syst.
,
46
, pp.
79
88
.
4.
Ni
,
J.
,
Liu
,
L.
,
Liu
,
C.
,
Hu
,
X.
, and
Shen
,
T.
,
2016
, “
Fixed-Time Dynamic Surface High-Order Sliding Mode Control for Chaotic Oscillation in Power System
,”
Nonlinear Dyn.
,
86
(
1
), pp.
401
420
.
5.
Ni
,
J.
,
Liu
,
C.
,
Liu
,
K.
, and
Pang
,
X.
,
2014
, “
Variable Speed Synergetic Control for Chaotic Oscillation in Power System
,”
Nonlinear Dyn.
,
78
(
1
), pp.
681
690
.
6.
Razavi-Panah
,
J.
, and
Johari Majd
,
V.
,
2008
, “
A Robust Multi-Objective DPDC for Uncertain T–S Fuzzy Systems
,”
Fuzzy Sets Syst.
,
159
(
20
), pp.
2749
2762
.
7.
Wang
,
Z.-P.
, and
Wu
,
H.-N.
,
2015
, “
On Fuzzy Sampled-Data Control of Chaotic Systems Via a Time-Dependent Lyapunov Functional Approach
,”
IEEE Trans. Cybern.
,
45
(
4
), pp.
819
829
.
8.
Li
,
H.
,
Wu
,
C.
,
Shi
,
P.
, and
Gao
,
Y.
,
2015
, “
Control of Nonlinear Networked Systems With Packet Dropouts: Interval Type-2 Fuzzy Model-Based Approach
,”
IEEE Trans. Cybern.
,
45
(
11
), pp.
2378
2389
.
9.
Vafamand
,
N.
,
Asemani
,
M. H.
, and
Khayatiyan
,
A.
,
2016
, “
A Robust L1 Controller Design for Continuous-Time TS Systems With Persistent Bounded Disturbance and Actuator Saturation
,”
Eng. Appl. Artif. Intell.
,
56
, pp.
212
221
.
10.
Vafamand
,
N.
, and
Rakhshan
,
M.
,
2017
, “
Dynamic Model-Based Fuzzy Controller for Maximum Power Point Tracking of Photovoltaic Systems: A Linear Matrix Inequality Approach
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
5
), p.
051010
.
11.
Hu
,
C.
,
Jiang
,
H.
, and
Teng
,
Z.
,
2011
, “
General Impulsive Control of Chaotic Systems Based on a TS Fuzzy Model
,”
Fuzzy Sets Syst.
,
174
(
1
), pp.
66
82
.
12.
Liu
,
Y.
,
Zhao
,
S.
, and
Lu
,
J.
,
2011
, “
A New Fuzzy Impulsive Control of Chaotic Systems Based on T-S Fuzzy Model
,”
IEEE Trans. Fuzzy Syst.
,
19
(
2
), pp.
393
398
.
13.
Yang
,
T.
,
2001
,
Impulsive Control Theory
,
Springer-Verlag
,
New York
.
14.
Guerra
,
T. M.
, and
Vermeiren
,
L.
,
2004
, “
LMI-Based Relaxed Nonquadratic Stabilization Conditions for Nonlinear Systems in the Takagi–Sugeno's Form
,”
Automatica
,
40
(
5
), pp.
823
829
.
15.
Vafamand
,
N.
, and
Sha Sadeghi
,
M.
,
2015
, “
More Relaxed Non-Quadratic Stabilization Conditions for TS Fuzzy Control Systems Using LMI and GEVP
,”
Int. J. Control Autom. Syst.
,
13
(
4
), pp.
995
1002
.
16.
Nian
,
Y.
, and
Zheng
,
Y.
,
2012
, “
Controlling Discrete Time T-S Fuzzy Chaotic Systems Via Adaptive Adjustment
,”
Phys. Procedia
,
24
(Pt. C), pp.
1915
1921
.
17.
Liu
,
M.
,
Zhang
,
S.
,
Fan
,
Z.
,
Zheng
,
S.
, and
Sheng
,
W.
,
2013
, “
Exponential H∞ Synchronization and State Estimation for Chaotic Systems Via a Unified Model
,”
IEEE Trans. Neural Networks Learn. Syst.
,
24
(
7
), pp.
1114
1126
.
18.
Li
,
X.
, and
Rakkiyappan
,
R.
,
2013
, “
Impulsive Controller Design for Exponential Synchronization of Chaotic Neural Networks With Mixed Delays
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
6
), pp.
1515
1523
.
19.
Khooban
,
M. H.
,
Vafamand
,
N.
, and
Niknam
,
T.
,
2016
, “
T–S Fuzzy Model Predictive Speed Control of Electrical Vehicles
,”
ISA Trans.
,
64
, pp.
231
240
.
20.
Yeh
,
K.
,
Chen
,
C. W.
,
Chen
,
C. Y.
,
Lo
,
D. C.
, and
Chung
,
P. Y.
,
2012
, “
A Fuzzy Lyapunov LMI Criterion to a Chaotic System
,”
Phys. Procedia
,
25
, pp.
262
269
.
21.
Guerra
,
T. M.
,
Bernal
,
M.
,
Guelton
,
K.
, and
Labiod
,
S.
,
2012
, “
Non-Quadratic Local Stabilization for Continuous-Time Takagi–Sugeno Models
,”
Fuzzy Sets Syst.
,
201
, pp.
40
54
.
22.
Lee
,
D. H.
,
Joo
,
Y. H.
, and
Tak
,
M. H.
,
2014
, “
Local Stability Analysis of Continuous-Time Takagi–Sugeno Fuzzy Systems: A Fuzzy Lyapunov Function Approach
,”
Inf. Sci.
,
257
, pp.
163
175
.
23.
Sadeghi
,
M. S.
,
Vafamand
,
N.
, and
Khooban
,
M. H.
,
2016
, “
LMI-Based Stability Analysis and Robust Controller Design for a Class of Nonlinear Chaotic Power Systems
,”
J. Franklin Inst.
,
353
(
13
), pp.
2835
2858
.
24.
Pan
,
J.
,
Guerra
,
T. M.
,
Fei
,
S.
, and
Jaadari
,
A.
,
2012
, “
Nonquadratic Stabilization of Continuous T–S Fuzzy Models: LMI Solution for a Local Approach
,”
IEEE Trans. Fuzzy Syst.
,
20
(
3
), pp.
594
602
.
25.
Lam
,
H. K.
,
2009
, “
Stability Analysis of T–S Fuzzy Control Systems Using Parameter-Dependent Lyapunov Function
,”
IET Control Theory Appl.
,
3
(
6
), pp.
750
762
.
26.
Tanaka
,
K.
, and
Wang
,
H. O.
,
2001
,
Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach
,
Wiley
,
New York
.
27.
Scherer
,
C.
, and
Weiland
,
S.
,
2004
, “
Linear Matrix Inequalities in Control
,” Delft University of Technology, Delft, The Netherlands, accessed Aug. 24, 2017, http://www.dcsc.tudelft.nl/~cscherer/lmi/notes05.pdf
28.
Belanger
,
J.
,
Venne
,
P.
, and
Paquin
,
J. N.
,
2010
, “
The What, Where and Why of Real-Time Simulation
,”
Planet RT
,
1
, pp. 37–49.https://www.opal-rt.com/wp-content/themes/enfold-opal/pdf/L00161_0436.pdf
29.
Vanfretti
,
L.
,
Chenine
,
M.
,
Almas
,
M. S.
,
Leelaruji
,
R.
,
Angquist
,
L.
, and
Nordstrom
,
L.
,
2012
, “
SmarTS Lab—A Laboratory for Developing Applications for WAMPAC Systems
,”
IEEE Power and Energy Society General Meeting
(
PESGM
), San Diego, CA, July 22–26, pp.
1
8
.
30.
Khaki
,
B.
,
Ranjbar-Sahraei
,
B.
,
Noroozi
,
N.
, and
Seifi
,
A.
,
2011
, “
Interval Type-2 Fuzzy Finite-Time Control Approach for Chaotic Oscillation Damping of Power Systems
,”
Int. J. Innovative Comput. Inf. Control
,
7
(
12
), pp.
6827
6935
.http://www.ijicic.org/10-03058-1.pdf
31.
Ni
,
J.
,
Liu
,
L.
,
Liu
,
C.
,
Hu
,
X.
, and
Li
,
A.
,
2017
, “
Chaos Suppression for a Four-Dimensional Fundamental Power System Model Using Adaptive Feedback Control
,”
Trans. Inst. Meas. Control
,
39
(
2
), pp.
194
207
.
32.
Yu
,
J.
,
Chen
,
B.
,
Yu
,
H.
, and
Gao
,
J.
,
2011
, “
Adaptive Fuzzy Tracking Control for the Chaotic Permanent Magnet Synchronous Motor Drive System Via Backstepping
,”
Nonlinear Anal. Real World Appl.
,
12
(
1
), pp.
671
681
.
33.
Hou
,
Y.-Y.
,
2012
, “
Controlling Chaos in Permanent Magnet Synchronous Motor Control System Via Fuzzy Guaranteed Cost Controller
,”
Abstr. Appl. Anal.
,
2012
, pp.
1
10
.
34.
Li
,
Z.
,
Park
,
J. B.
,
Joo
,
Y. H.
,
Zhang
,
B.
, and
Chen
,
G.
,
2002
, “
Bifurcations and Chaos in a Permanent-Magnet Synchronous Motor
,”
IEEE Trans. Circuits Syst. Fundam. Theory Appl.
,
49
(
3
), pp.
383
387
.
35.
Njah
,
A. N.
,
2010
, “
Tracking Control and Synchronization of the New Hyperchaotic Liu System Via Backstepping Techniques
,”
Nonlinear Dyn.
,
61
(
1–2
), pp.
1
9
.
You do not currently have access to this content.