The purpose of designing a controller for a teleoperation system is to achieve stability and optimal operation in the presence of factors such as time-delay, system disturbance, and modeling errors. This paper proposes a new method of controller design based on singular perturbation for the bilateral teleoperation of robots through Internet. This study provides sliding mode controller based on the singular perturbation model which is robust on time-varying delay. Using singular perturbation method, the teleoperation system is decomposed into fast and slow subsystems. Teleoperation systems usually have complex dynamic and controller designing is difficult for them. This method is a novel step toward reducing order modeling. In this paper, teleoperation system dynamic was decomposed into two states, slave and error (different from master and slave) and a sliding mode controller was designed for each state. Despite the communication channel in teleoperation systems, it is difficult and almost impossible to design controller based on full-order system. Therefore, many researchers have focused on controller design based on master and slave subsystems. This study shows that the singular perturbation is a proper method for controller design in master or slave, based on slave and error subsystem models with the effect on the total system. It is intended here to reduce the tracking error between the master and the slave. For different values of time-delay, the positions of master-slave were compared. This comparison was also applied for master and slave control signals based on singular perturbation. In all schemes, the effectiveness of the system was shown through simulations and comparisons between the various schemes were presented.

References

1.
Sheridan
,
T. B.
,
1995
, “
Teleoperation, Telerobotics and Telepresence: A progress Report
,”
Control Eng. Pract.
,
3
(
2
), pp.
204
214
.10.1016/0967-0661(94)00078-U
2.
Micaelli
,
A.
,
Marchal
,
P.
, and
Vertut
,
J.
,
1981
, “
Short Transmission Delay on a Force Reflective Bilateral Manipulator
,”
Proceedings of the 4th Rom_An, Sywarsaw
, pp.
269
275
.
3.
Lawrence
,
D. A.
,
1993
, “
Stability and Transparency in Bilateral Teleoperation
,”
IEEE Trans. Robot. Autom.
,
9
(
5
), pp.
624
637
.10.1109/70.258054
4.
Hashtrudi-zaad
,
K.
, and
Salcudean
,
S. E.
,
2001
, “
Analysis of Control Architectures for Teleoperation Systems With Impedance/Admittance Master and Slave Manipulators
,”
Int. J. Robot. Res.
,
20
(
6
), pp.
419
445
.10.1177/02783640122067471
5.
Kwon
,
D. S.
,
Hannaford
,
B.
, and
Ryu
,
J. H.
,
2004
, “
Stable Teleoperation With Time-Domain Passivity Control
,”
IEEE Trans. Robot. Autom.
,
20
(
2
), pp.
365
373
.10.1109/TRA.2004.824689
6.
Momeni
,
H. R.
,
Sharafat
,
A. R.
, and
Kamrani
,
E.
,
2005
, “
A Novel Adaptive Control System for Stable Teleoperation via Internet
,”
Proceedings of IEEE Conference on Control Applications
, Toronto, Canada, pp.
1164
1169
.
7.
Postigo
,
J.
, and
Slawinski
,
V. E.
,
2007
, “
Bilateral Teleoperation Through the Internet
,”
Int. J. Robot. Res.
,
55
(
3
), pp.
205
215
.
8.
Sirouspour
,
S.
,
Shahdi
,
A.
, and
Setoodeh
,
P.
,
2006
, “
Discrete-time Multi-model Control for Cooperative Teleoperation under Time Delay
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Orlando, FL, pp.
2921
2926
.
9.
Stramigioli
,
S.
,
Fantuzzi
,
C.
, and
Secchi
,
C.
,
2008
, “
Variable Delay in Scaled-Port-Hamiltonian Telemanipulation
,”
Mechatronics
,
18
(
7
), pp.
357
363
.10.1016/j.mechatronics.2007.09.003
10.
Preusche
,
C.
, and
Ryu
,
J. H.
,
2007
, “
Stable Bilateral Control of Teleoperators Under Time-Varying Communication Delay: Time Domain Passivity Approach
,”
2007 IEEE International Conference on Robotics and Automation
, pp.
3508
3513
.
11.
Artigas
,
J.
,
Preusche
,
C.
, and
Ryu
,
J. H.
,
2010
, “
A Passive Bilateral Control Scheme for a Teleoperator With Time-Varying Communication Delay
,”
Mechatronics
,
20
(
7
), pp.
812
823
.10.1016/j.mechatronics.2010.07.006
12.
Momeni
,
H. R.
,
Janabi-sharifi
,
F.
, and
Hosseini-Suny
,
K.
,
2010
, “
A Modified Adaptive Controller Design for Teleoperation Systems
,”
Robot. Autom. Syst.
,
58
(
5
), pp.
676
683
.10.1016/j.robot.2009.11.006
13.
Song
,
J. B.
,
Cho
,
C.
,
Kang
,
S.
,
Kim
,
M.
, and
Ryu
,
D.
,
2010
, “
Development of a Six DOF Haptic Master for Teleoperation of a Mobile Manipulator
,”
Mechatronics
,
20
(
2
), pp.
181
191
.10.1016/j.mechatronics.2010.02.008
14.
Seo
,
C.
,
Kim
,
J. P.
,
Ryu
,
J.
, and
Park
,
S.
,
2011
, “
Robustly Stable Rate-Mode Bilateral Teleoperation Using an Energy-Bounding Approach
,”
Mechatronics
,
21
(
1
), pp.
176
184
.10.1016/j.mechatronics.2010.10.011
15.
Sheng
,
L. H.
,
Liu
,
G. P.
, and
Yang
,
X. H.
,
2011
, “
An Adaptive Teleoperation Based on Predictive Control
,”
Proc. Eng.
,
16
, pp.
151
156
.10.1016/j.proeng.2011.08.1065
16.
Jiang
,
Z. C.
,
Tang
,
G. J.
, and
Zhou
,
J. Y.
,
2012
, “
A New Approach for Teleoperation Rendezvous and Docking With Time Delay
,”
Sci. China Phys. Mech.
,
55
(
2
), pp.
339
346
.10.1007/s11433-011-4589-1
17.
Talebi
,
H. A.
,
Sedigh
,
A. K.
, and
Forouzantabar
,
A.
,
2012
, “
Bilateral Control of Master–Slave Manipulators With Constant Time Delay
,”
ISA Trans.
,
51
(
1
), pp.
74
80
.10.1016/j.isatra.2011.07.005
18.
Khalil
,
H.
,
O'Reilly
,
J.
, and
Kokotovic
,
P.
,
1999
,
Singular Perturbation Methods in Control Analysis and Design
,
Academic Press
,
London
.
19.
Fenichel
,
N.
,
1971
, “
Persistence and Smoothness of Invariant Manifolds for Flows
,”
Ind. Univ. Math. J.
,
21
, pp.
193
226
.10.1512/iumj.1972.21.21017
20.
Fenichel
,
N.
,
1974
, “
Asymptotic Stability With Rate Conditions
,”
Ind. Univ. Math. J.,
23
, pp.
1109
1137
.10.1512/iumj.1974.23.23090
21.
Fenichel
,
N.
,
1977
, “
Asymptotic Stability With Rate Conditions, II
,”
Ind. Univ. Math. J.,
26
, pp.
81
93
.10.1512/iumj.1977.26.26006
22.
Pugh
,
C. C.
,
Shub
,
M.
, and
Hirsch
M. W.
,
1977
,
Invariant Manifolds
, Lecture Notes in Mathematics,
Springer
,
New York
.
23.
Siddarth
,
A.
, and
Valasek
,
J.
,
2011
, “
Global Tracking Control Structures for Nonlinear Singularly Perturbed Aircraft Systems
,”
Proceedings of the CEAS EuroGNC
, April, Munich, Germany, pp.
13
15
.
24.
Ricardo
,
P.
,
Marco
,
D. S.
, and
Teixeira
,
A.
,
2012
, “
Regularization and Singular Perturbation Techniques for Non-Smooth Systems
,”
Physica D,
24
(
22
), pp.
1948
1955
.10.1016/j.physd.2011.06.022
25.
Sheridan
,
T. B.
,
1992
,
Telerobotics, Automation, and Human Supervisory Control
,
The MIT Press
,
Cambrige, MA
.
26.
Spong
,
D. J.
, and
Lee
,
M. W.
,
2006
, “
Passive Bilateral Teleoperation With Constant Time-Delay
,”
IEEE Trans. Robot.
,
22
(
2
), pp.
269
281
.10.1109/TRO.2005.862037
27.
Craig
,
J. J.
,
1989
,
Introduction to Robotics, Mechanics and Control
, 2nd ed,
Addison-Wesley Longman Publishing Co., Inc.
,
Boston, MA
.
28.
Janabi-Sharifi
,
F.
,
1995
, “
Modelling, Simulation and Identification of Robotic Manipulators Interacting With Environments
,”
J. Intell. Robot. Syst.
,
13
(
1
), pp.
1
44
.10.1007/BF01664754
29.
Pinto
,
M. A.
,
Trofimchuk
,
S. I.
, and
Ivanov
,
A. F.
,
2000
, “
Global Behavior in Nonlinear System With Delayed Feedback
,”
IEEE Conference on Decision and Control
, Sydney, Australia, Vol.
5
, pp.
4420
4421
.
30.
Ivanov
,
A. F.
, and
Sharkovsky
,
A. N.
,
1991
, “
Oscillations in Singularly Perturbed Delay Equations
,”
Dyn. Report.
,
1
, pp.
165
224
.10.1007/978-3-642-61243-5_5
31.
Reinoso
,
O.
,
Sabater
,
J. M.
,
Perez
,
C.
, and
Azorin
,
J. M.
,
2003
, “
A New Control Method of Teleoperation With Time Delay
,”
The International Conference on Advanced Robotics, Coimbra
, Portugal, pp.
100
105
.
You do not currently have access to this content.