An electro-hydraulic load simulator (EHLS) is a typical case of torque systems with strong external disturbances from hydraulic motion systems. A new velocity synchronizing compensation strategy is proposed in this paper to eliminate motion disturbances, based on theoretical and experimental analysis of a structure invariance method and traditional velocity synchronizing compensation controller (TVSM). This strategy only uses the servo-valve's control signal of motion system and torque feedback of torque system, which could avoid the requirement on the velocity and acceleration signal in the structure invariance method, and effectively achieve a more accurate velocity synchronizing compensation in large loading conditions than a TVSM. In order to facilitate the implementation of this strategy in engineering cases, the selection rules for compensation parameters are proposed. It does not rely on any accurate information of structure parameters. This paper presents the comparison data of an EHLS with various typical operating conditions using three controllers, i.e., closed loop proportional integral derivative (PID) controller, TVSM, and the proposed improved velocity synchronizing controller. Experiments are conducted to confirm that the new strategy performs well against motion disturbances. It is more effective to improve the tracking accuracy and is a more appropriate choice for engineering applications.

References

1.
Yoonsu
,
N.
, and
Sung
,
K. H.
,
2002
, “
Force Control System Design for Aerodynamic Load Simulator
,”
Control Eng. Pract.
,
5
(
10
), pp.
549
558
.
2.
Shao
,
J. P.
,
Li
,
J. Y.
,
Wang
,
Z. W.
, and
Han
,
G. H.
,
2010
, “
Research on Electro-Hydraulic Load Simulator Based on Building Model of Flow Press Servo-Valve
,”
Adv. Mater. Res.
,
129
, pp.
213
217
.10.4028/www.scientific.net/AMR.129-131.213
3.
Yu
,
C. Y.
, and
Liu
,
Q. H.
,
1998
, “
Velocity Feedback in Load Simulator With a Motor Synchronizing in Position
,”
J. Harbin Inst. Technol.
,
5
(
3
), pp.
78
80
.
4.
Liu
,
C. N.
,
1989
,
Hydraulic Servo System Optimization Design Theory
,
Press of Metallurgy Industry
,
Beijing
, pp.
121
123
(in Chinese).
5.
Li
,
Y. H.
,
2002
, “
Development of Hybrid Control of Electrohydraulic Torque Load Simulator
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(3), pp.
415
419
.10.1115/1.1485288
6.
Jacazio
,
G.
, and
Balossini
,
G.
,
2007
, “
Real-Time Loading Actuator Control for an Advanced Aerospace Test Rig
,”
Proc. Inst. Mech. Eng. Part I
,
221
, pp.
199
210
.
7.
Jiao
,
Z. X.
,
Gao
,
J. X.
,
Hua
,
Q.
, and
Wang
,
S. P.
,
2004
, “
The Velocity Synchronizing Control on the Electro-Hydraulic Load Simulator
,”
Chin. J. Aeronaut.
,
17
(
1
), pp.
39
46
.10.1016/S1000-9361(11)60201-X
8.
Yao
,
J. Y.
,
Jiao
,
Z. X.
,
Shang
,
Y. X.
, and
Huang
,
C.
,
2010
, “
Adaptive Nonlinear Optimal Compensation Control for Electro-Hydraulic Load Simulator
,”
Chin. J. Aeronaut.
,
23
(
6
), pp.
720
733
.10.1016/S1000-9361(09)60275-2
9.
Yao
,
J. Y.
,
Jiao
,
Z. X.
,
Yao
,
B.
,
Shang
,
Y. X.
, and
Dong
,
W. B.
,
2012
, “
Nonlinear Adaptive Robust Force Control of Hydraulic Load Simulator
,”
Chin. J. Aeronaut.
,
25
, pp.
766
775
.10.1016/S1000-9361(11)60443-3
10.
Li
,
G. Q.
,
Cao
,
J.
,
Zhang
,
B.
, and
Zhao
,
K. D.
,
2006
, “
Design of Robust Controller in Electro Hydraulic Load Simulator
,”
2006 International Conference on Machine Learning and Cybernetics
, pp.
779
784
.
11.
Yoonsu
,
N.
,
2001
, “
QFT Force Loop Design for the Aerodynamic Load Simulator
,”
IEEE Trans. Aerosp. Electron. Syst.
,
37
(
4
), pp.
1384
1392
.10.1109/7.976973
12.
Karpenko
,
M.
, and
Sepehri
,
N.
,
2012
, “
Electro-hydraulic Force Control Design of a Hardware-in-the-Loop Load Emulator Using a Nonlinear QFT Technique
,”
Control Eng. Pract.
,
20
(
6
), pp.
598
609
.10.1016/j.conengprac.2012.02.004
13.
Dinh
,
Q. T.
,
Ahn
,
K. K.
, and
Yoon
,
J. I.
,
2008
, “
Introduction to Quantitative Feedback Theory for Robust Force Control of Load Simulator
,”
ICCE 2008 Second International Conference on Communications and Electronics
,
Hoi An
, pp.
42
47
.
14.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
New York
, pp.
84
85
.
15.
Yao
,
J. Y.
,
Jiao
,
Z. X.
, and
Ma
,
D. W.
,
2014
, “
Extended-State-Observer-Based Output Feedback Nonlinear Robust Control of Hydraulic Systems With Backstepping
”.
IEEE Trans. Ind. Electron.
(in press).10.1109/TIE.2014.2304912
16.
Yao
,
J. Y.
,
Jiao
,
Z. X.
,
Ma
,
D. W.
, and
Yan
,
L.
,
2013
, “
High Accuracy Tracking Control of Hydraulic Rotary Actuators With Modelling Uncertainties
,”
IEEE/ASME Trans. Mechatronics
,
19
(2), pp.
633
641
.10.1109/TMECH.2013.2252360
You do not currently have access to this content.