In this article, the problem of eigenstructure in descriptor matrix second-order linear systems using combined velocity and acceleration feedbacks is considered. This is promising for better applicability in many practical applications where the velocity and acceleration signals are easier to obtain than the proportional and velocity ones. First, the necessary and sufficient conditions which ensure solvability are derived. Then the parametric expressions of gain controller and eigenvector matrix are formulated. The proposed approach can offer all the degrees of freedom and has great potential in practical applications. The solution is general and can be applied when mass matrices that can be either singular or nonsingular. In this framework, infinite eigenvalues for descriptor systems are relocated by finite ones.

References

1.
Inman
,
D. J.
, and
Kress
,
A.
,
1995
, “
Eigenstructure Assignment Using Inverse Eigenvalue Methods
,”
J. Guidance, Control Dyn.
,
18
, pp.
625
627
.10.2514/3.21433
2.
Kim
,
Y.
,
Kim
,
H. S.
, and
Junkins
,
J. L.
,
1999
, “
Eigenstructure Assignment Algorithm for Mechanical Second-Order Systems
,”
J. Guidance, Control Dyn.
,
22
, pp.
729
731
.10.2514/2.4444
3.
Nichols
,
N. K.
, and
Kautsky
,
J.
,
2001
, “
Robust Eigenstructure Assignment in Quadratic Matrix Polynomials: Nonsingular Case
,”
SIAM J. Matrix Anal. Appl.
,
23
, pp.
77
102
.10.1137/S0895479899362867
4.
Datta
,
B. N.
,
2002
, “
Finite-Element Model Updating, Eigenstructure Assignment and Eigenvalue Embedding Techniques for Vibrating Systems
,”
Mech. Syst. Signal Process.
,
16
, pp.
83
96
.10.1006/mssp.2001.1443
5.
Ouyang
,
H.
,
Richiedei
,
D.
,
Trevisani
,
A.
, and
Zanardo
,
G.
,
2012
, “
Eigenstructure Assignment in Undamped Vibrating Systems: A Convex-Constrained Modification Method Based on Receptances
,”
Mech. Syst. Signal Process.
,
27
, pp.
397
409
.10.1016/j.ymssp.2011.09.010
6.
Chu
,
E. K.
,
2002
, “
Pole Assignment for Second-Order Systems
,”
Mech. Syst. Signal Process.
,
16
, pp.
39
59
.10.1006/mssp.2001.1439
7.
Preumont
,
A.
,
2002
,
Vibration Control of Active Structures: An Introduction
, 2nd ed.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
8.
Yang
,
J. N.
,
Li
,
Z.
, and
Liu
,
S. C.
,
1991
, “
Instantaneous Optimal Control With Acceleration and Velocity Feedback
,”
Probab. Eng. Mech.
,
6
, pp.
204
211
.10.1016/0266-8920(91)90011-R
9.
Rofooei
,
F. R.
, and
Tadjbakhsh
, I
. G.
,
1993
, “
Optimal Control Of Structures With Acceleration, Velocity, and Displacement Feedback
,”
J. Eng. Mech.
,
119
, pp.
1993
2010
.10.1061/(ASCE)0733-9399(1993)119:10(1993)
10.
Abdelaziz
,
T. H. S.
,
2013
, “
Eigenstructure Assignment for Second-Order Systems Using Velocity-Plus-Acceleration Feedback
,”
Struct. Control Health Monitoring
,
20
(
4
), pp.
465
482
.10.1002/stc.503
11.
Campbell
,
S. L.
, and
Rose
,
N. J.
,
1982
, “
A Second Order Singular Linear System Arising in Electric Power Systems Analysis
,”
Int. J. Syst. Sci.
,
13
, pp.
101
108
.10.1080/00207728208926334
12.
Marszalek
,
W.
, and
Unbehauen
,
H.
,
1992
, “
Second Order Generalized Linear Systems Arising in Analysis of Flexible Beams
,”
Proceedings of 31st Conference on Decision & Control
,
Tucson, AZ
, pp.
3514
3518
.
13.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
1996
, “
Second-Order Systems With Singular Mass Matrix and an Extension of Guyan Reduction
,”
SIAM J. Matrix Anal. Appl.
,
17
, pp.
649
657
.10.1137/S0895479894268269
14.
Dumont
,
Y.
,
Goeleven
,
D.
, and
Rochdi
,
M.
,
2001
, “
Reduction of Second Order Unilateral Singular Systems, Applications in Mechanics
,”
J. Appl. Math. Mech.
,
81
, pp.
219
245
.
15.
Udwadia
,
F. E.
, and
Phohomsiri
,
P.
,
2006
, “
Explicit Equations of Motion for Constrained Mechanical Systems With Singular Mass Matrices and Applications to Multi-Body Dynamics
,”
Proc. Roy. Soc. London, Ser. A
,
462
, pp.
2097
2117
.10.1098/rspa.2006.1662
16.
Losse
,
P.
, and
Mehrmann
,
V.
,
2008
, “
Controllability and Observability of Second Order Descriptor Systems
,”
SIAM J. Control Optim.
,
47
, pp.
1351
1379
.10.1137/060673977
17.
Zhang
,
X.
, and
Liu
,
X.
,
2012
, “
Output Regulation for Matrix Second Order Singular Systems via Measurement Output Feedback
,”
J. Franklin Inst.
,
349
, pp.
2124
2135
.10.1016/j.jfranklin.2012.03.006
18.
Fallah
,
S.
,
Khajepour
,
A.
,
Fidan
,
B.
,
Chen
,
S.-K.
, and
Litkouhi
,
B.
,
2013
, “
Vehicle Optimal Torque Vectoring Using State-Derivative Feedback and Linear Matrix Inequality
,”
IEEE Trans. Vehicular Technol.
,
62
(
4
), pp.
1540
1552
.10.1109/TVT.2012.2232947
19.
Bastürk
,
H. I.
, and
Krstic
,
M.
,
2013
, “
Adaptive Cancellation of Matched Unknown Sinusoidal Disturbances for LTI Systems by State Derivative Feedback
,”
ASME J. Dyn. Syst., Meas. Control
,
135
, pp.
014501-1
014501-6
.
20.
Abdelaziz
,
T. H. S.
,
2012
, “
Parametric Eigenstructure Assignment Using State-Derivative Feedback for Linear Systems
,”
J. Vib. Control
,
18
(
12
), pp.
1809
1827
.10.1177/1077546311423549
21.
Abdelaziz
,
T. H. S.
,
2010
, “
Optimal Control Using Derivative Feedback for Linear Systems
,”
Proc. Inst. Mech. Eng., J. Syst. Control Eng.
,
224
(
2
), pp.
185
202
.10.1243/09544054JEM1602
22.
Abdelaziz
,
T. H. S.
,
2009
, “
Robust Pole Assignment for Linear Time-Invariant Systems Using State-Derivative Feedback
,”
Proc. Inst. Mech. Eng., J. Syst. Control Eng.
,
223
(
3
), pp.
187
199
.
23.
Faria
,
F. A.
,
Assuncao
,
E.
,
Teixeira
,
M. C. M.
,
Cardim
,
R.
, and
Da Silva
,
N. A. P.
,
2009
, “
Robust State-Derivative Pole Placement LMI-Based Designs for Linear Systems
,”
Int. J. Control
,
82
, pp.
1
12
.10.1080/00207170801942188
24.
Ren
,
J.
, and
Zhang
,
Q.
,
2013
, “
Positive Real Control for Descriptor Systems With Uncertainties in the Derivative Matrix Via a Proportional Plus Derivative Feedback
,”
Int. J. Syst. Sci.
,
44
, pp.
450
460
.10.1080/00207721.2011.602481
You do not currently have access to this content.