This paper addresses the problem of absolute stability of Lurie system with interval time-varying delay. The delay range is divided into two equal segments and an appropriate Lyapunov–Krasovskii functional (LKF) is defined. A tighter bounding technique for the derivative of LKF is developed. This bounding technique in combination with the Wirtinger inequality is used to develop the absolute stability criterion in terms of linear matrix inequalities (LMIs). The stability analysis is also extended to the Lurie system with norm-bounded parametric uncertainties. The effectiveness of the proposed approach has been illustrated through a numerical example and Chua's oscillator.

References

1.
Popov
,
V. M.
,
1962
, “
Absolute Stability of Nonlinear Systems of Automatic Control
,”
Autom. Remote Control
,
22
(
8
), pp.
857
875
.
2.
Liao
,
X.
, and
Yu
,
P.
,
2008
,
Absolute Stability of Nonlinear Control Systems
,
Springer-Verlag
,
New York
.
3.
Sipahi
,
R.
,
Niculescu
,
S.
,
Abdallah
,
C. T.
,
Michiels
,
W.
, and
Gu
,
K.
,
2011
, “
Stability and Stabilization of Systems With Time Delay
,”
IEEE Control Syst.
,
31
(
1
), pp.
38
65
.10.1109/MCS.2010.939135
4.
Gu
,
K.
,
Kharitonov
,
V. L.
, and
Chen
,
J.
,
2003
,
Stability of Time-Delay Systems
,
Birkhauser
,
Boston
, MA.
5.
Han
,
Q. L.
, and
Yue
,
D.
,
2007
, “
Absolute Stability of Lur'e Systems With Time-Varying Delay
,”
IET Control Theory Appl.
,
1
(
3
), pp.
854
859
.10.1049/iet-cta:20060213
6.
Mukhija
,
P.
,
Kar
,
I. N.
, and
Bhatt
,
R. K. P.
,
2012
, “
Delay-Distribution-Dependent Robust Stability Analysis of Uncertain Lurie Systems With Time-Varying Delay
,”
Acta Autom. Sin.
,
38
(
7
), pp.
1100
1106
.
7.
Wu
,
M.
,
Feng
,
Z. Y.
,
He
,
Y.
, and
She
,
J. H.
,
2010
, “
Improved Delay-Dependent Absolute Stability and Robust Stability for a Class of Nonlinear Systems With a Time-Varying Delay
,”
Int. J. Rob. Nonlinear Control
,
20
(
6
), pp.
694
702
.
8.
Castelan
,
E. B.
,
Tarbouriech
,
S.
, and
Queinnec
,
I.
,
2008
, “
Control Design for a Class of Nonlinear Continuous-Time Systems
,”
Automatica
,
44
(
8
), pp.
2034
2039
.10.1016/j.automatica.2007.11.013
9.
Gao
,
J. F.
,
Pan
,
H. P.
, and
Ji
,
X. F.
,
2010
, “
A New Delay-Dependent Absolute Stability Criterion for Lurie Systems With Time-Varying Delay
,”
Acta Autom. Sin.
,
36
(
6
), pp.
845
850
.10.3724/SP.J.1004.2010.00845
10.
Ramakrishnan
,
K.
, and
Ray
,
G.
,
2011
, “
Improved Stability Criteria for Lurie Type Systems With Time-Varying Delay
,”
Acta Autom. Sin.
,
37
(
5
), pp.
639
644
.
11.
Jiang
,
X.
, and
Han
,
Q. L.
,
2008
, “
New Stability Criteria for Linear Systems With Interval Time-Varying Delay
,”
Automatica
,
44
(
10
), pp.
2680
2685
.10.1016/j.automatica.2008.02.020
12.
Ramakrishnan
,
K.
, and
Ray
,
G.
,
2010
, “
Delay-Range-Dependent Stability Criteria for Lur'e System With Interval Time-Varying Delay
,”
Proceedings of the 49th IEEE Conference on Decision and Control
,
Atlanta
,
GA
, pp.
170
175
.
13.
Zeng
,
H. B.
,
He
,
Y.
,
Wu
,
M.
, and
Xiao
,
S. P.
,
2012
, “
Further Results on Absolute Stability of Lur'e Systems With Interval Time-Varying Delay
,”
Proceedings of the 24th Chinese Control and Decision Conference
,
Taiyuan
,
China
, pp.
541
545
.
14.
Seuret
,
A.
, and
Gouaisbaut
,
F.
,
2012
, “
On the Use of the Wirtinger Inequalities for Time-Delay Systems
,”
Proceedings of 10th IFAC Workshop on Time Delay Systems
, Boston, MA.
15.
Peng
,
C.
,
2012
, “
Improved Delay-Dependent Stabilisation Criteria for Discrete Systems With a New Finite Sum Inequality
,”
IET Control Theory Appl.
,
6
(
3
), pp.
448
453
.10.1049/iet-cta.2011.0109
16.
Shao
,
H.
,
2009
, “
New Delay-Dependent Stability Criteria for Systems With Interval Delay
,”
Automatica
,
45
(
3
), pp.
744
749
.10.1016/j.automatica.2008.09.010
17.
Park
,
P. G.
,
Ko
,
J. W.
, and
Jeong
,
C.
,
2011
, “
Reciprocally Convex Approach to Stability of Systems With Time-Varying Delays
,”
Automatica
,
47
(
1
), pp.
235
238
.10.1016/j.automatica.2010.10.014
18.
Jiang
,
X.
, and
Han
,
Q. L.
,
2005
, “
On H∞ Control for Linear Systems With Interval Time-Varying Delay
,”
Automatica
,
41
(
12
), pp.
2099
2106
.10.1016/j.automatica.2005.06.012
19.
He
,
Y.
,
Wang
,
Q. G.
,
Lin
,
C.
, and
Wu
,
M.
,
2007
, “
Delay-Range-Dependent Stability for Systems With Time-Varying Delay
,”
Automatica
,
43
(
2
), pp.
371
376
.10.1016/j.automatica.2006.08.015
20.
Chen
,
Y.
,
Zhang
,
Y.
, and
Li
,
Q.
,
2008
, “
Delay-Dependent Absolute Stability of Lur'e Systems With Interval Time-Varying Delay
,”
Proceedings of the IEEE International Conference on Networking
,
Sensing and Control
,
Sanya, China
, pp.
1696
1699
.
21.
Liu
,
X.
,
Wang
,
J.
,
Duan
,
Z.
, and
Huang
,
L.
,
2010
, “
New Absolute Stability Criteria for Time-Delay Lur'e Systems With Sector-Bounded Nonlinearity
,”
Int. J. Rob. Nonlinear Control
,
20
(
6
), pp.
659
672
.
You do not currently have access to this content.