We consider the problem of optimal coverage with area-constraints in a mobile multi-agent system. For a planar environment with an associated density function, this problem is equivalent to dividing the environment into optimal subregions such that each agent is responsible for the coverage of its own region. In this paper, we design a continuous-time distributed policy which allows a team of agents to achieve a convex area-constrained partition of a convex workspace. Our work is related to the classic Lloyd algorithm, and makes use of generalized Voronoi diagrams. We also discuss practical implementation for real mobile networks. Simulation methods are presented and discussed.

References

1.
Macwan
,
A.
,
Nejat
,
G.
, and
Benhabib
,
B.
,
2011
, “
Optimal Deployment of Robotic Teams for Autonomous Wilderness Search and Rescue
,”
IEEE/RSJ International Conference on Intelligent Robots & Systems
, pp.
4544
4549
.
2.
Han
,
Z.
,
Swindlehurst
,
A. L.
, and
Liu
,
K. J. R.
,
2006
, “
Smart Deployment/Movement of Unmanned Air Vehicle to Improve Connectivity in MANET
,”
IEEE Wireless Communications and Networking Conference
, pp.
252
257
.
3.
Wurman
,
P. R.
,
D'Andrea
,
R.
, and
Mountz
,
M.
,
2008
, “
Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses
,”
AI Maga.
,
29
(
1
), pp.
9
20
.
4.
Smith
,
R. N.
,
Chao
,
Y.
,
Li
,
P. P.
,
Caron
,
D. A.
,
Jones
,
B. H.
, and
Sukhatme
,
G. S.
,
2010
, “
Planning and Implementing Trajectories for Autonomous Underwater Vehicles to Track Evolving Ocean Processes Based on Predictions From a Regional Ocean Model
,”
Int. J. Robot. Res.
,
29
(
12
), pp.
1475
1497
.10.1177/0278364910377243
5.
Bullo
,
F.
,
Cortés
,
J.
, and
Martínez
,
S.
,
2009
,
Distributed Control of Robotic Networks
,
Princeton University
,
Princeton, NJ
.
6.
Okabe
,
A.
,
Boots
,
B.
,
Sugihara
,
K.
, and
Chiu
,
S. N.
,
2000
,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
, 2nd ed.,
Wiley Series in Probability and Statistics
, John Wiley & Sons, Chichester, UK.
7.
Pavone
,
M.
,
Arsie
,
A.
,
Frazzoli
,
E.
, and
Bullo
,
F.
,
2011
, “
Distributed Algorithms for Environment Partitioning in Mobile Robotic Networks
,”
IEEE Trans. Autom. Control
,
56
(
8
), pp.
1834
1848
.10.1109/TAC.2011.2112410
8.
Cortés
,
J.
,
2010
, “
Coverage Optimization and Spatial Load Balancing by Robotic Sensor Networks
,”
IEEE Trans. Autom. Control
,
55
(
3
), pp.
749
754
.10.1109/TAC.2010.2040495
9.
Carlsson
,
J. G.
, and
Devulapalli
,
R.
,
2013
, “
Shadow Prices in Territory Division
,” University of Minnesota, Available at: http://menet.umn.edu/~jgc/shadow-prices-rev2.pdf
10.
Patel
,
R.
,
Frasca
,
P.
, and
Bullo
,
F.
,
2013
, “
Centroidal Area-Constrained Partitioning for Robotic Networks
,”
ASME Dynamic Systems and Control Conference
.
11.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1985
,
Matrix Analysis
,
Cambridge University
, Cambridge, UK.
12.
Luenberger
,
D. G.
,
1984
,
Linear and Nonlinear Programming
, 2nd ed.,
Addison-Wesley
, Reading, MA.
13.
Bullo
,
F.
,
Carli
,
R.
, and
Frasca
,
P.
,
2012
, “
Gossip Coverage Control for Robotic Networks: Dynamical Systems on the Space of Partitions
,”
SIAM J. Control Optim.
,
50
(
1
), pp.
419
447
.10.1137/100806370
14.
Nowzari
,
C.
, and
Cortés
,
J.
,
2012
, “
Self-Triggered Coordination of Robotic Networks for Optimal Deployment
,”
Automatica
,
48
(
6
), pp.
1077
1087
.10.1016/j.automatica.2012.03.009
15.
Carlsson
,
J. G.
,
Carlsson
,
E.
, and
Devulapalli
,
R.
, “
Balancing Workloads for Service Vehicles Over a Geographic Territory
,”
IEEE/RSJ International Conference on Intelligent Robots Systems
(to be published).
16.
Durham
,
J. W.
,
Carli
,
R.
,
Frasca
,
P.
, and
Bullo
,
F.
,
2012
, “
Discrete Partitioning and Coverage Control for Gossiping Robots
,”
IEEE Trans. Robot.
,
28
(
2
), pp.
364
378
.10.1109/TRO.2011.2170753
17.
Ny
,
J. L.
, and
Pappas
,
G. J.
,
2013
, “
Adaptive Deployment of Mobile Robotic Networks
,”
IEEE Trans. Autom. Control
,
58
(
3
), pp.
654
666
.10.1109/TAC.2012.2215512
18.
Schwager
,
M.
,
Rus
,
D.
, and
Slotine
,
J. J.
,
2009
, “
Decentralized, Adaptive Coverage Control for Networked Robots
,”
Int. J. Robot. Res.
,
28
(
3
), pp.
357
375
.10.1177/0278364908100177
You do not currently have access to this content.