In this paper, we propose a new control design approach for polynomial nonlinear systems based on higher degree Lyapunov functions. To derive higher degree Lyapunov functions and polynomial nonlinear controllers effectively, the original nonlinear systems are augmented under the rule of power transformation. The augmented systems have more state variables and the additional variables represent higher order combinations of the original ones. As a result, the stabilization and L2 gain control problems with higher degree Lyapunov functions can be recast to the search of quadratic Lyapunov functions for augmented nonlinear systems. The sum-of-squares (SOS) programming is then used to solve the quadratic Lyapunov function of augmented state variables (higher degree in terms of original states) and its associated nonlinear controllers through convex optimization problems. The proposed control approach has also been extended to polynomial nonlinear systems subject to actuator saturations for better performance including domain of attraction (DOA) expansion and regional L2 gain minimization. Several examples are used to illustrate the advantages and benefits of the proposed approach for unsaturated and saturated polynomial nonlinear systems.

References

1.
Parrilo
,
P.
,
2000
, “
Structured Semidefinite Programs and Semi-Algebraic Geometry Methods in Robustness and Optimization
,” Ph.D. dissertation, California Institute of Technology, Pasadena, CA.
2.
Jarvis-Wloszek
,
Z.
, and
Packard
,
A.
,
2002
, “
An LMI Method to Demonstrate Simultaneous Stability Using Non-Quadratic Polynomial Lyapunov Functions
,”
Proc. IEEE Conf. Dec. Contr.
, pp.
287
292
.
3.
Tan
,
W.
, and
Packard
,
A.
,
2008
, “
Stability Region Analysis Using Polynomial and Composite Polynomial Lyapunov Functions and Sum-of-Squares Programming
,”
IEEE Trans. Autom. Control
,
53
(
2
), pp.
565
571
.10.1109/TAC.2007.914221
4.
Papachristodoulou
,
A.
,
Peet
,
M. M.
, and
Lall
,
S. K.
,
2009
, “
Analysis of Polynomial Systems With Time Delays via the Sum of Squares Decomposition
,”
IEEE Trans. Autom. Control
,
54
(
5
), pp.
1058
1064
.10.1109/TAC.2009.2017168
5.
Zheng
,
Q.
, and
Wu
,
F.
,
2009
, “
Stabilization of Polynomial Nonlinear Systems Using Rational Lyapunov Functions
,”
Int. J. Control
,
82
(
9
), pp.
1605
1615
.10.1080/00207170802627267
6.
Narimani
,
M.
, and
Lam
,
H.
,
2010
, “
SOS-Based Stability Analysis of Polynomial Fuzzy-Model-Based Control Systems via Polynomial Membership Functions
,”
IEEE Trans. Fuzzy Systems
,
18
(
5
), pp.
862
871
.10.1109/TFUZZ.2010.2050890
7.
Franze
,
G.
,
Famularo
,
D.
, and
Casavola
,
A.
,
2012
, “
Constrained Nonlinear Polynomial Time-Delay Systems: A Sum-of-Squares Approach to Estimate the Domain of Attraction
,”
IEEE Trans. Autom. Control
,
57
(
10
), pp.
2673
2679
.10.1109/TAC.2012.2190189
8.
Prajna
,
S.
,
2005
, “
Optimization-Based Methods for Nonlinear and Hybrid Systems Verification
,” Ph.D. Dissertation, California Institute of Technology, Pasadena, CA.
9.
Topcu
,
U.
, and
Packard
,
A.
,
2009
, “
Linearized Analysis Versus Optimization-Based Nonlinear Analysis for Nonlinear Systems
,”
Proceedings of the American Control Conference
, pp.
790
795
.
10.
Summers
,
E.
,
Chakraborty
,
A.
,
Tan
,
W.
,
Topcu
,
U.
,
Seiler
,
P.
,
Balas
,
G.
, and
Packard
,
A.
,
2013
, “
Quantitative Local L2-Gain and Reachability Analysis for Nonlinear Systems
”.
Int. J. Robust Nonlinear Control
,
23
(
10
), pp.
1115
1135
.10.1002/rnc.2948
11.
Wu
,
F.
, and
Prajna
,
S.
,
2005
, “
SOS-based Solution Approach For Polynomial LPV System Analysis and Synthesis Problems
”.
Int. J. Control
,
78
(
8
), pp.
600
611
.10.1080/00207170500114865
12.
Prajna
,
S.
,
Papachristodoulou
,
A.
, and
Wu
,
F.
,
2004
, “
Nonlinear Control Synthesis by Sum of Squares Optimization: A Lyapunov-Based Approach
,”
Proceedings of the Asian Control Conference
, pp.
157
165
.
13.
Ebenbauer
,
C.
,
Renz
,
J.
, and
Allgower
,
F.
,
2005
, “
Polynomial Feedback and Observer Design Using Nonquadratic Lyapunov Functions
,”
Proc. Joint IEEE Conf. Dec. Contr. & Eur. Contr. Conf.
, pp.
7587
7592
.
14.
Ebenbauer
,
C.
, and
Allgower
,
F.
,
2006
, “
Analysis and Design of Polynomial Control Systems Using Dissipation Inequalities and Sum of Squares
,”
Comput. Chem. Eng.
,
30
, pp.
1590
1602
.10.1016/j.compchemeng.2006.05.014
15.
Ichihara
,
H.
,
2008
, “
State Feedback Synthesis for Polynomial Systems With Bounded Disturbances
,”
Proc. IEEE Conf. Dec. Contr.
, pp.
2520
2525
.
16.
Ichihara
,
H.
,
2009
, “
Optimal Control for Polynomial Systems Using Matrix Sum of Squares Relaxations
,”
IEEE Trans. Autom. Control
,
54
(
5
), pp.
1048
1053
.10.1109/TAC.2009.2017159
17.
Lu
,
W.-M.
, and
Doyle
,
J. C.
,
1995
, “
H∞ Control of Nonlinear Systems: A Convex Characterization
,”
IEEE Trans. Autom. Control
,
40
(
9
), pp.
1668
1675
.10.1109/9.412643
18.
Zheng
,
Q.
, and
Wu
,
F.
,
2009
, “
Nonlinear H∞ Control Designs With Axi-Symmetric Rigid Body Spacecraft
,”
AIAA J. Guidance Nav. Control
,
32
(
3
), pp.
850
859
.10.2514/1.40060
19.
Prajna
,
S.
,
Parrilo
,
P. A.
, and
Rantzer
,
A.
,
2004
, “
Nonlinear Control Synthesis by Convex Optimization
,”
IEEE Trans. Autom. Control
,
49
(
2
), pp.
310
314
.10.1109/TAC.2003.823000
20.
Bernstein
,
D. S.
, and
Michel
,
A. N.
,
1995
, “
A Chronological Bibliography on Saturating Actuators
,”
Int. J. Robust Nonlinear Control
,
5
, pp.
375
380
.10.1002/rnc.4590050502
21.
Tarbouriech
,
S.
, and
Garcia
,
G.
, eds.,
1997
,
Control of Uncertain Systems With Bounded Inputs
,
Springer
,
London
.
22.
Kapila
,
V.
, and
Grigoriadis
,
K. M.
, eds.,
2002
,
Actuator Saturation Control
,
Marcel Dekkar
,
New York
.
23.
Lin
,
Y.
, and
Sontag
,
E. D.
,
1991
, “
A Universal Formula for Stabilization With Bounded Controls
”.
Syst. Control Lett.
,
16
(
6
), pp.
393
397
.10.1016/0167-6911(91)90111-Q
24.
Haddad
,
W. M.
,
Fausz
,
J. L.
, and
Chellaboina
,
V.-S.
,
1999
, “
Nonlinear Controllers for Nonlinear Systems With Input Nonlinearities
,”
J. Frank. Inst.
,
336
, pp.
649
664
.10.1016/S0016-0032(98)00003-9
25.
Castelan
,
E. B.
,
Tarbouriech
,
S.
, and
Queinnec
,
I.
,
2008
, “
Control Design for A Class of Nonlinear Continuous-Time Systems
,”
Automatica
,
44
(
8
), pp.
2034
2039
.10.1016/j.automatica.2007.11.013
26.
Valmorbida
,
G.
,
Tarbouriech
,
S.
, and
Garcia
,
G.
,
2013
, “
Design of Polynomial Control Laws for Polynomial Systems Subject to Actuator Saturation
,”
IEEE Trans. Autom. Control
,
58
(
7
), pp.
1758
1770
.10.1109/TAC.2013.2248256
27.
Brockett
,
R. W.
,
1973
, “
Lie algebras and Lie Groups in Control Theory
,”
Geometric Methods in System Theory
,
D. Q.
Mayne
and
R. W.
Brockett
, eds.,
Dordrecht
,
Reidel
, pp.
213
225
.
28.
Barkin
,
A.
, and
Zelentsovsky
,
A.
,
1983
, “
Method of Power Transformations for Analysis and Stability of Nonlinear Control Systems
,”
Syst. Control Lett.
,
3
, pp.
303
310
.10.1016/0167-6911(83)90030-0
29.
Zelentsovsky
,
A. L.
,
1994
, “
Nonquadratic Lyapunov Functions for Robust Stability Analysis of Linear Uncertain Systems
,”
IEEE Trans. Autom. Control
,
39
(
1
), pp.
135
138
.10.1109/9.273350
30.
Chesi
,
G.
,
Garulli
,
A.
,
Tesi
,
A.
, and
Vicino
,
A.
,
2003
, “
Homogeneous Lyapunov Functions for Systems With Structured Uncertainties
,”
Automatica
,
39
(
6
), pp.
1027
1035
.10.1016/S0005-1098(03)00039-6
31.
Choi
,
M. D.
,
Lam
,
T. Y.
, and
Reznick
,
B.
,
1995
, “
Sums of Squares of Real Polynomials
,”
Symp. Pure Math.
,
58
, pp.
103
126
.
32.
Peet
,
M. M.
, and
Papachristodoulou
,
A.
,
2012
, “
A Converse Sum of Squares Lyapunov Result With A Degree Bound
,”
IEEE Trans. Autom. Control
,
57
(
9
), pp.
2281
2293
.10.1109/TAC.2012.2190163
33.
Ahmadi
,
A. A.
, and
Parrilo
,
P. A.
,
2001
, “
Converse Results on Existence of Sum of Squares Lyapunov Functions
,”
50th IEEE CDC Conf. Dec. Control
, pp.
6516
6521
.
34.
Prajna
,
S.
,
Papachristodoulou
,
A.
,
Seiler
,
P.
, and
Parrilo
,
P. A.
,
2004
,
SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB
, ver. 2, http://www.cds.caltech.edu/sostools.
35.
Hu
,
T.
,
Teel
,
A.
, and
Zaccarian
,
L.
,
2006
, “
Stability and Performance for Saturated Systems via Quadratic and Nonquadratic Lyapunov Functions,
IEEE Trans. Autom. Control
,
51
(
11
), pp.
1133
1168
.
36.
Hu
,
T.
,
Lin
,
Z.
, and
Chen
,
B.
,
2002
, “
An Analysis and Design Method for Linear Systems Subject to Actuator Saturation and Disturbance
,”
Automatica
,
38
(
2
), pp.
351
359
.10.1016/S0005-1098(01)00209-6
37.
Tsiotras
,
P.
, and
Longuski
,
J. M.
,
1994
, “
Spin-Axis Stabilization of Symmetric Spacecraft With Two Control Torques
,”
Syst. Control Lett.
,
23
, pp.
395
402
.10.1016/0167-6911(94)90093-0
38.
Conway
,
J. B.
,
1978
,
Functions of One Complex Variable
,
Springer
,
New York
.
You do not currently have access to this content.