A novel integrated robust control synthesis methodology is presented here which combines a traditional sensitivity theory with relatively new advancements in bilinear matrix inequality (BMI) constrained optimization problems. The proposed methodology is demonstrated using a numerical example of integrated control design problem for combine harvester header linkage. The integrated design methodology presented is compared with a traditional sequential design method and the results show that the proposed methodology provides a viable alternative for robust controller synthesis and often times offers even a better performance than competing methods.

References

1.
Bodden
,
D.
, and
Junkins
,
J.
,
1985
, “
Eigenvalue Optimization Algorithms for Structure/Controller Design Iterations
,”
J. Guid., Control, Dyn.
,
8
(6), pp.
697
706
.10.2514/3.20044
2.
Onoda
,
J.
, and
Haftka
,
R. T.
,
1987
, “
An Approach to Structure/Control Simultaneous Optimization for Large Flexible Spacecraft
,”
AIAA J.
,
25
(8), pp.
1133
1138
.10.2514/3.9754
3.
Padula
,
S.
,
Sandridge
,
C.
,
Walsh
,
J.
, and
Haftka
,
R.
,
1992
, “
Integrated Controls-Structures Optimization of a Large Space Structure
,”
Comput. Struct.
,
42
(
5
), pp.
725
732
.10.1016/0045-7949(92)90184-2
4.
Zeiler
,
T.
, and
Gilbert
,
M.
,
1993
, “
Integrated Control/Structure Optimization by Multilevel Decomposition
,”
Struct. Optim.
,
6
(
2
), pp.
99
107
.10.1007/BF01743342
5.
Khot
,
N.
,
1995
, “
Optimum Structural Design and Robust Active Control Using Singular Value Constraints
,”
Comput. Mech.
,
16
(
3
), pp.
208
215
.10.1007/BF00369782
6.
Tsujioka
,
K.
,
Kajiwara
,
I.
, and
Nagamatsu
,
A.
,
1996
, “
Integrated Optimum Design of Structure and H-Control System
,”
AIAA J.
,
34
(
1
), pp.
159
165
.10.2514/3.13036
7.
Khot
,
N.
, and
Öz
,
H.
,
1998
, “
Structural–Control Optimization With H2-and H-Norm Bounds
,”
Optim. Control Appl. Methods
,
18
(
4
), pp.
297
311
.10.1002/(SICI)1099-1514(199707/08)18:4<297::AID-OCA604>3.0.CO;2-A
8.
Lu
,
J.
, and
Skelton
,
R.
,
2000
, “
Integrating Structure and Control Design to Achieve Mixed H2/H Performance
,”
Int. J. Control
,
73
(
16
), pp.
1449
1462
.10.1080/00207170050163323
9.
Bozca
,
M.
,
Muğan
,
A.
, and
Temeltaş
,
H.
,
2008
, “
Decoupled Approach to Integrated Optimum Design of Structures and Robust Control Systems
,”
Struct. Multidiscip. Optim.
,
36
(
2
), pp.
169
191
.10.1007/s00158-007-0208-1
10.
Fu
,
K.
, and
Mills
,
J.
,
2005
, “
A Convex Approach Solving Simultaneous Mechanical Structure and Control System Design Problems With Multiple Closed-Loop Performance Specifications
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
1
), pp.
57
68
.10.1115/1.1876493
11.
Pil
,
A.
, and
Asada
,
H.
,
1996
, “
Integrated Structure/Control Design of Mechatronic Systems Using a Recursive Experimental Optimization Method
,”
IEEE/ASME Trans. Mechatronics
,
1
(
3
), pp.
191
203
.10.1109/3516.537042
12.
Wu
,
F.
,
Zhang
,
W.
,
Li
,
Q.
, and
Ouyang
,
P.
,
2002
, “
Integrated Design and PD Control of High-Speed Closed-Loop Mechanisms
,”
ASME J. Dyn. Syst., Meas., Control
,
124
(4), pp.
522
528
.10.1115/1.1513179
13.
Krishnaswami
,
P.
, and
Kelkar
,
A.
,
2003
, “
Optimal Design of Controlled Multibody Dynamic Systems for Performance, Robustness, and Tolerancing
,”
Eng. Comput.
,
19
, pp.
26
34
.10.1007/s00366-002-0246-
14.
Carrigan
,
J.
,
Kelkar
,
A.
, and
Krishnaswami
,
P.
,
2005
, “
Integrated Design and Minimum Sensitivity Design of Controlled Multibody Systems
,”
ASME
Paper No. DETC2005-85429. 10.1115/DETC2005-85429
15.
Bode
,
H.
,
1952
,
Network Analysis and Feedback Amplifier Design
(
Bell Telephone Laboratories Series
, Vol. 8),
Van Nostrand-Reinhold, New York
.
16.
Horowitz
,
I.
,
1963
,
Synthesis of Feedback Systems
,
Academic Press
, New York.
17.
Tomović
,
R.
,
1963
,
Sensitivity Analysis of Dynamic Systems
,
McGraw-Hill
, New York.
18.
Bradt
,
A.
,
1968
, “
Sensitivity Functions in the Design of Optimal Controllers
,”
IEEE Trans. Autom. Control
,
13
(
1
), pp.
110
111
.10.1109/TAC.1968.1098826
19.
Sobral
,
M. J.
,
1968
, “
Sensitivity in Optimal Control Systems
,”
Proc. IEEE
,
56
(
10
), pp.
1644
1652
.10.1109/PROC.1968.6700
20.
Sannuti
,
P.
,
Cruz
,
J.
,
Lee
,
I.
, and
Bradt
,
A.
,
1968
, “
A Note on Trajectory Sensitivity of Optimal Control Systems
,”
IEEE Trans. Autom. Control
,
13
(
1
), pp.
111
113
.10.1109/TAC.1968.1098782
21.
Eslami
,
M.
,
1994
,
Theory of Sensitivity in Dynamic Systems: An Introduction
,
Springer-Verlag
, Berlin.
22.
Fleming
,
P.
,
1973
,
Trajectory Sensitivity Reduction in the Optimal Linear Regulator
,
The Queen's University of Belfast
, Belfast, UK.
23.
Fleming
,
P.
, and
Newmann
,
M.
,
1977
, “
Design Algorithms for a Sensitivity Constrained Suboptimal Regulator
,”
Int J. Control
,
25
(
6
), pp.
965
978
.10.1080/00207177708922282
24.
Frank
,
P.
,
1978
,
Introduction to System Sensitivity Theory
,
Academic Press
, New York.
25.
Yedavalli
,
K.
, and
Skelton
,
R.
,
1982
, “
Controller Design for Parameter Sensitivity Reduction in Linear Regulators
,”
Optim. Control Appl. Methods
,
3
(
3
), pp.
221
240
.10.1002/oca.4660030302
26.
Youla
,
D.
,
Jabr
,
H.
, and
Bongiorno
,
J. J.
,
1976
, “
Modern Wiener-HOPF Design of Optimal Controllers—Part II: The Multivariable Case
,”
IEEE Trans. Autom. Control
,
21
(
3
), pp.
319
338
.10.1109/TAC.1976.1101223
27.
Zames
,
G.
, and
Francis
,
B.
,
1983
, “
Feedback, Minimax Sensitivity, and Optimal Robustness
,”
IEEE Trans. Autom. Control
,
28
(
5
), pp.
585
601
.10.1109/TAC.1983.1103275
28.
Tulpule
,
P.
, and
Kelkar
,
A.
,
2012
, “
Robust Optimal Control Design Using Sensitivity Dynamics and Youla Parameterization
,”
ASME
Paper No. DSCC2012-MOVIC2012-8741. 10.1115/DSCC2012-MOVIC2012-8741
29.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
, Vol.
15
,
Society for Industrial Mathematics
, Philadelphia, PA.
30.
El Ghaoui
,
L.
, and
Niculescu
,
S.
,
2000
,
Advances in Linear Matrix Inequality Methods in Control
, Vol.
2
,
Society for Industrial Mathematics
, Philadelphia, PA.
31.
Scherer
,
C.
,
Gahinet
,
P.
, and
Chilali
,
M.
,
1997
, “
Multiobjective Output-Feedback Control Via LMI Optimization
,”
IEEE Trans. Autom. Control
,
42
(
7
), pp.
896
911
.10.1109/9.599969
32.
Iwasaki
,
T.
, and
Skelton
,
R.
,
1994
, “
All Controllers for the General [H]∞ Control Problem: LMI Existence Conditions and State Space Formulas
,”
Automatica
,
30
(
8
), pp.
1307
1317
.10.1016/0005-1098(94)90110-4
33.
Pipeleers
,
G.
,
Demeulenaere
,
B.
,
Swevers
,
J.
, and
Vandenberghe
,
L.
,
2009
, “
Extended LMI Characterizations for Stability and Performance of Linear Systems
,”
Syst. Control Lett.
,
58
(
7
), pp.
510
518
.10.1016/j.sysconle.2009.03.001
34.
Tuan
,
H.
, and
Apkarian
,
P.
,
2000
, “
Low Nonconvexity-Rank Bilinear Matrix Inequalities: Algorithms and Applications in Robust Controller and Structure Designs
,”
IEEE Trans. Autom. Control
,
45
(
11
), pp.
2111
2117
.10.1109/9.887636
35.
Goh
,
K.
,
Safonov
,
M.
, and
Papavassilopoulos
,
G.
,
1995
, “
Global Optimization for the Biaffine Matrix Inequality Problem
,”
J. Global Optim.
,
7
(
4
), pp.
365
380
.10.1007/BF01099648
36.
VanAntwerp
,
J. G.
,
Braatz
,
R. D.
, and
Sahinidis
,
N. V.
,
1997
, “
Globally Optimal Robust Control for Systems With Time-Varying Nonlinear Perturbations
,”
Comput. Chem. Eng.
,
21
, pp.
S125
S130
.10.1016/S0098-1354(97)87490-X
37.
El Ghaoui
,
L.
,
Oustry
,
F.
, and
AitRami
,
M.
,
1997
, “
A Cone Complementarity Linearization Algorithm for Static Output-Feedback and Related Problems
,”
IEEE Trans. Autom. Control
,
42
(
8
), pp.
1171
1176
.10.1109/9.618250
38.
Kanev
,
S.
,
Scherer
,
C.
,
Verhaegen
,
M.
, and
De Schutter
,
B.
,
2004
, “
Robust Output-Feedback Controller Design Via Local BMI Optimization
,”
Automatica
,
40
(
7
), pp.
1115
1127
.10.1016/j.automatica.2004.01.028
39.
Yim
,
S.
, and
Park
,
Y.
,
2011
, “
Design of Rollover Prevention Controller With Linear Matrix Inequality-Based Trajectory Sensitivity Minimisation
,”
Veh. Syst. Dyn.
,
49
(
8
), pp.
1225
1244
.10.1080/00423114.2010.507275
40.
Tulpule
,
P.
, and
Kelkar
,
A.
,
2013
, “
BMI Based Robust Optimal Control Synthesis Via Sensitivity Minimization
,” 6th Annual Dynamic Systems and Control Conference, Palo Alto, CA, October 21–23.
41.
Xie
,
Y.
,
Alleyne
,
A.
,
Greer
,
A.
, and
Deneault
,
D.
,
2011
, “
Fundamental Limits in Combine Harvester Header Height Control
,”
American Control Conference (ACC)
, San Francisco, CA, June 29–July 1, pp.
5279
5285
.
42.
Xie
,
Y.
, and
Alleyne
,
A.
,
2012
, “
Two Degree of Freedom Controller on Combine Harvester Header Height Control
,”
ASME
Paper No. DSCC2012-MOVIC2012-8576. 10.1115/DSCC2012-MOVIC2012-8576
43.
Clairaut
,
A.
,
1734
,
Histoire Acad. R. Sci. Paris
, pp.
196
215
.
You do not currently have access to this content.