This paper develops a passivity-based robust motion controller for a robot used in prosthetic leg performance studies. The mathematical model of the robot and passive prosthesis corresponds to a three degree-of-freedom, underactuated rigid manipulator. A form of robotic testing of prostheses involves tracking reference trajectories obtained from human gait studies. The robot presented in this paper emulates hip vertical displacement and thigh swing, and we consider a prosthesis with a passive knee for control development. The control objectives are to track commanded hip displacements and thigh angles accurately, even in the presence of parametric uncertainties and large disturbance forces arising from ground contact during the stance phase. We develop a passivity-based controller suitable for an underactuated system and compare it with a simple independent-joint sliding mode controller (IJ-SMC). This paper describes the mathematical model and nominal parameters, derives the passivity-based controller using Lyapunov techniques and reports success in real-time implementation of both controllers, whose advantages and drawbacks are compared.

References

1.
Laferrier
,
J.
, and
Gailey
,
R.
,
2010
, “
Advances in Lower-Limb Prosthetic Technology
,”
J. Phys. Med. Rehabil. Clin. North Am.
,
21
(
1
), pp.
87
110
.10.1016/j.pmr.2009.08.003
2.
Bellmann
,
M.
,
Schmalz
,
T.
, and
Blumentritt
,
S.
,
2010
, “
Comparative Biomechanical Analysis of Current Microprocessor-Controlled Prosthetic Knee Joints
,”
Arch. Phys. Med. Rehabil.
,
91
(
4
), pp.
644
52
.10.1016/j.apmr.2009.12.014
3.
Chin
,
T.
, Machida, K., Sawamura, S., Shiba, R., Oyabu, H., Nagakura, Y., Takase, I., and Nakagawa, A.,
2006
, “
Comparison of Different Microprocessor Controlled Knee Joints on the Energy Consumption During Walking in Trans-Femoral Amputees: Intelligent Knee Prosthesis (IP) Versus C-Leg
,”
Prosthet. Orthot. Int.
,
30
(
1
), pp.
73
80
.10.1080/03093640500533414
4.
Johansson
,
J.
, Sherrill, D. M., Riley, P. O., Bonato, P., and Herr, H.,
2005
, “
A Clinical Comparison of Variable-Damping and Mechanically Passive Prosthetic Knee Devices
,”
Am. J. Phys. Med. Rehabil.
,
84
(
8
), pp.
563
75
.10.1097/01.phm.0000174665.74933.0b
5.
Segal
,
A.
D., Orendurff, M. S., Klute, G. K., McDowell, M. L., Pecoraro, J. A., Shofer, J., and Czerniecki, J. M.,
2006
, “
Kinematic and Kinetic Comparisons of Transfemoral Amputee Gait Using C-Leg and Mauch SNS Prosthetic Knees
,”
J. Rehabil. Res. Dev.
,
43
(
7
), pp.
857
70
.10.1682/JRRD.2005.09.0147
6.
Seroussi
,
R. E.
, Gitter, A., Czerniecki, J. M., and Weaver, K.,
1996
, “
Mechanical Work Adaptations of Above-Knee Amputee Ambulation
,”
Arch. Phys. Med. Rehabil.
,
77
(
11
), pp.
1209
1214
.10.1016/S0003-9993(96)90151-3
7.
“Biomechatronische Systeme,” 2013, Fraunhofer Institute for Manufacturing Engineering and Automation, Orthopaedics and Motion Systems, Stuttgart, retrieved on November 2013, http://ipa.fraunhofer.de/Orthopaedics_and_Motion_Systems.83.0.html?&L=2
8.
“Medical Device Solutions–Services,” 2013, Cleveland Clinic Lerner Research Institute, Neuromusculoskeletal Simulator, retrieved on November 2013, http://mds.clevelandclinic.org/Services/BioRobotics/Services.aspx
9.
Richter
,
H.
,
Simon
,
D.
,
Smith
,
W.
, and
Samorezov
,
S.
,
2012
, “
Dynamic Modeling, Parameter Estimation and Control of a Leg Prosthesis Test Robot
,”
Appl. Math. Modell.
(submitted).
10.
Richter
,
H.
, Simon, D., Smith, W. A., and Samorezov, S.,
2013
,
“Dynamic Modeling and Parameter Estimation of a Leg Prosthesis Test Robot,” Laboratory Report
, retrieved on November 2013, http://academic.csuohio.edu/richter_h/lab/ccfrobot/
11.
Kwan
,
C.
,
1995
, “
Hybrid Force/Position Control for Manipulators With Motor Dynamics Using a Sliding-Adaptive Approach
,”
IEEE Trans. Autom. Control
,
40
(
5
), pp.
963
968
.10.1109/9.384241
12.
Wren
,
J.
, and
Kreutz-Delgado
,
K.
,
1992
, “
Motion and Force Control of Multiple Robotic Manipulators
,”
Automatica
,
28
(
4
), pp.
729
743
.10.1016/0005-1098(92)90033-C
13.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part II—Implementation
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
8
16
.10.1115/1.3140713
14.
Michael
,
J.
,
1999
, “
Modern Prosthetic Knee Mechanisms
,”
Clin. Orthop. Relat. Res.
,
361
(
47
), pp.
39
47
.10.1097/00003086-199904000-00006
15.
van den Bogert
,
A.
,
Samorezov
,
S.
,
Davis
,
B.
, and
Smith
,
W.
,
2012
, “
Modeling and Optimal Control of an Energy-Storing Prosthetic Knee
,”
ASME J. Biomech. Eng.
,
134
(
5
), p.
051007
.10.1115/1.4006680
16.
Spong
,
M.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
,
Wiley
,
New York
.
17.
Denavit
,
J.
, and
Hartenberg
,
R.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(2), pp. 215–221.
18.
Utkin
,
V.
,
1992
,
Sliding Modes in Control Optimization
,
Springer-Verlag
, Berlin.
19.
Corless
,
M.
, and
Leitman
,
G.
,
1981
, “
Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems
,”
IEEE Trans. Autom. Control
,
26
(
5
), pp.
1139
1144
.10.1109/TAC.1981.1102785
20.
Edwards
,
C.
, and
Spurgeon
,
S.
,
1998
,
Sliding Mode Control: Theory and Applications
,
Taylor and Francis
,
London
.
21.
Slotine
,
J.
, and
Li
,
W.
,
1990
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
22.
Sage
,
H.
,
De
Mathelin
,
M.
, and
Ostertag
,
E.
,
1999
, “
Robust Control of Robotic Manipulators: A Survey
,”
Int. J. Control
,
72
(
16
), pp.
1498
1522
.10.1080/002071799220137
You do not currently have access to this content.