This paper presents the synchronization of two chaotic systems, namely the drive and response chaotic systems, using sampled-data polynomial controllers. The sampled-data polynomial controller is employed to drive the system states of the response chaotic system to follow those of the drive chaotic system. Because of the zero-order-hold unit complicating the system dynamics by introducing discontinuity to the system, it makes the stability analysis difficult. However, the sampled-data polynomial controller can be readily implemented by a digital computer or microcontroller to lower the implementation cost and time. With the sum-of-squares (SOS) approach, the system to be handled can be in the form of nonlinear state-space equations with the system matrix depending on system states. Based on the Lyapunov stability theory, SOS-based stability conditions are obtained to guarantee the system stability and realize the chaotic synchronization subject to an H performance function. The solution to the SOS-based stability conditions can be found numerically using the third-party Matlab toolbox SOSTOOLS. Simulation examples are given to illustrate the merits of the proposed sampled-data polynomial control approach for chaotic synchronization problems.

References

1.
Chen
,
G.
, and
Dong
,
X.
,
1988
,
From Chaos to Order: Methodologies, Perspectives and Applications
,
World Scientific
,
Singapore
.
2.
Ushio
,
T.
,
1996
, “
Control of Chaotic Synchronization in Composite Systems With Applications to Secure Communication Systems
,”
IEEE Trans. Circuits and Systems—I: Fundamental and Applications
,
43
(
6
), pp.
500
503
.10.1109/81.503264
3.
Chen
,
B.
,
Liu
,
X.
, and
Tong
,
S.
,
2007
, “
Adaptive Fuzzy Approach to Control Unified Chaotic Systems
,”
Chaos, Solitons & Fractals
,
34
(
4
), pp.
1180
1187
.10.1016/j.chaos.2006.04.035
4.
Sun
,
Y.
,
Cao
,
J.
, and
Wang
,
Z.
,
2007
, “
Exponential Synchronization of Stochastic Perturbed Chaotic Delayed Neural Networks
,”
Neurocomputing
,
70
(
13–15
), pp.
2477
2485
.10.1016/j.neucom.2006.09.006
5.
Ott
,
E.
,
Grebogi
,
N.
, and
Yorke
,
J.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
10
), pp.
1196
1199
.10.1103/PhysRevLett.64.1196
6.
Shinbrot
,
T.
,
Ott
,
E.
,
Grebogi
,
N.
, and
Yorke
,
J.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
65
(
26
), pp.
3215
3218
.10.1103/PhysRevLett.65.3215
7.
Fradkov
,
A. L.
,
Andrievskii
,
B.
, and
Evans
,
R. J.
,
2008
, “
Synchronization of Nonlinear Systems Under Information Constraints
,”
Chaos
,
18
(
3
), p.
037109
.10.1063/1.2977459
8.
Fradkov
,
A. L.
,
Andrievskii
,
B.
, and
Evans
,
R. J.
,
2008
, “
Controlled Synchronization Under Information Constraints
,”
Phys. Rev. E
,
78
(
3
), p.
036210
.10.1103/PhysRevE.78.036210
9.
Fradkov
,
A. L.
,
Andrievskii
,
B.
, and
Evans
,
R. J.
,
2009
, “
Synchronization of Passifiable Lurie Systems Via Limited-Capacity Communication Channel
,”
IEEE Trans. Circuits and Systems—I: Regular Papers
,
56
(
2
), pp.
430
439
.10.1109/TCSI.2008.2001365
10.
Karimi
,
H.
, and
Gao
,
H.
,
2010
, “
New Delay-Dependent Exponential H∞ Synchronization for Uncertain Neural Networks With Mixed Time Delays
,”
IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics
,
40
(
1
), pp.
173
185
.10.1109/TSMCB.2009.2024408
11.
Gao
,
H.
,
Lam
,
J.
, and
Chen
,
G.
,
2006
, “
New Criteria for Synchronization Stability of General Complex Dynamical Networks With Coupling Delays
,”
Phys. Lett. A
,
360
(
2
), pp.
263
273
.10.1016/j.physleta.2006.08.033
12.
Fei
,
Z.
,
Gao
,
H.
, and
Zheng
,
W.
,
2009
, “
New Synchronization Stability of Complex Networks With an Interval Time-Varying Coupling Delay
,”
IEEE Trans. Circuits and Systems II: Express Briefs
,
56
(
6
), pp.
499
503
.10.1109/TCSII.2009.2019329
13.
Wang
,
Z.
,
Wang
,
Y.
, and
Liu
,
Y.
,
2010
, “
Global Synchronization for Discrete-Time Stochastic Complex Networks With Randomly Occurred Nonlinearities and Mixed Time Delays
,”
IEEE Trans. Neural Networks
,,
21
(
1
), pp.
11
25
.10.1109/TNN.2009.2033599
14.
Liang
,
J.
,
Wang
,
Z.
,
Liu
,
Y.
, and
Liu
,
X.
,
2008
, “
Global Synchronization Control of General Delayed Discrete-Time Networks With Stochastic Coupling and Disturbances
,”
IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics
,
38
(
4
), pp.
1073
1083
.10.1109/TSMCB.2008.925724
15.
Huang
,
L.
,
Feng
,
R.
, and
Wang
,
M.
,
2004
, “
Synchronization of Chaotic Systems Via Nonlinear Control
,”
Phys. Lett. A
,
320
(
4
), pp.
271
275
.10.1016/j.physleta.2003.11.027
16.
Park
,
J. H.
,
2005
, “
Controlling Chaotic Systems Via Nonlinear Feedback Control
,”
Chaos, Solitons & Fractals
,
23
(
3
), pp.
1049
1054
.10.1016/j.chaos.2004.06.016
17.
Zhang
,
Q.
, and
Lu
,
J.
,
2008
, “
Chaos Synchronization of a New Chaotic Systems Via Nonlinear Control
,”
Chaos, Solitons & Fractals
,
37
(
1
), pp.
175
179
.10.1016/j.chaos.2006.08.036
18.
Park
,
J. H.
,
Ji
,
D. H.
,
Won
,
S. C.
, and
Lee
,
S. M.
,
2009
, “
Adaptive H∞ Synchronization of Unified Chaotic Systems
,”
Mod. Phys. Lett. B
,
23
(
9
), pp.
1157
1169
.10.1142/S021798490901934X
19.
Park
,
J. H.
,
Ji
,
D. H.
,
Won
,
S. C.
, and
Lee
,
S. M.
,
2008
, “
H∞ Synchronization of Time-Delayed Chaotic Systems
,”
Applied Mathemathics & Computation
,
204
(
1
), pp.
170
177
.10.1016/j.amc.2008.06.012
20.
Hou
,
Y. Y.
,
Liao
,
T. L.
, and
Yan
,
J. J.
,
2007
, “H∞
Synchronization of Chaotic Systems Using Output Feedback Control Design
,”
Physica A: Statistical Mechanics and Its Applications
,
379
(
1
), pp.
81
89
.10.1016/j.physa.2006.12.033
21.
Agiza
,
H. N.
, and
Yassen
,
M. T.
,
2001
, “
Synchronization of Rössler and Chen Chaotic Dynamical Systems Using Active Control
,”
Phys. Lett. A
,
278
(
4
), pp.
191
197
.10.1016/S0375-9601(00)00777-5
22.
Tanaka
,
K.
,
Ikeda
,
T.
, and
Wang
,
H. O.
,
1998
, “
A Unified Approach to Controlling Chaos Via an LMI-Based Fuzzy Control System Design
,”
IEEE Trans. Circuits and Systems—I: Fundamental and Applications
,
45
(
10
), pp.
1021
1040
.10.1109/81.728857
23.
Lam
,
H. K.
,
2009
, “
Output-Feedback Synchronization of Chaotic Systems Based on Sum-of-Squares Approach
,”
Chaos, Solitons & Fractals
,
41
(
5
), pp.
2624
2629
.10.1016/j.chaos.2008.09.043
24.
Ting
,
C. S.
,
2007
, “
An Observer-Based Approach to Controlling Time-Delay Chaotic Systems Via Takagi-Sugeno Fuzzy Model
,”
Information Sciences
,
177
(
20
), pp.
4314
4328
.10.1016/j.ins.2007.03.032
25.
Lam
,
H. K.
,
2010
, “
Chaotic Synchronisation Using Output/Full State-Feedback Polynomial Controller
,”
IET Control Theory & Applications
,
4
(
11
), pp.
2285
2292
.10.1049/iet-cta.2009.0328
26.
Vasegh
,
N.
, and
Majd
,
V. J.
,
2006
, “
Adaptive Fuzzy Synchronization of Discrete-Time Chaotic Systems
,”
Chaos, Solitons & Fractals
,
28
(
4
), pp.
1029
1036
.10.1016/j.chaos.2005.08.123
27.
Chen
,
B.
,
Liu
,
X.
, and
Tong
,
S.
,
2007
, “
Adaptive Fuzzy Approach to Control Unified Chaotic Systems
,”
Chaos, Solitons & Fractals
,
34
(
4
), pp.
1180
1187
.10.1016/j.chaos.2006.04.035
28.
Lee
,
W. K.
,
Hyun
,
C. H.
,
Lee
,
H.
,
Kim
,
E.
, and
Park
,
M.
,
2007
, “
Model Reference Adaptive Synchronization of T-S Fuzzy Discrete Chaotic Systems Using Output Tracking Control
,”
Chaos, Solitons & Fractals
,
34
(
5
), pp.
1590
1598
.10.1016/j.chaos.2006.04.059
29.
Hwang
,
E. J.
,
Hyun
,
C. H.
,
Kim
,
E.
, and
Park
,
M.
,
2009
, “
Fuzzy Model Based Adaptive Synchronization of Uncertain Chaotic Systems: Robust Tracking Control Approach
,”
Phys. Lett. A
,
373
(
22
), pp.
1935
1939
.10.1016/j.physleta.2009.03.057
30.
Lin
,
J. S.
, and
Yan
,
J. J.
,
2009
, “
Adaptive Synchronization for Two Identical Generalized Lorenz Chaotic Systems Via A Single Controller
,”
Nonlinear Analysis: Real World Applications
,
10
(
2
), pp.
1151
1159
.10.1016/j.nonrwa.2007.12.005
31.
Ting
,
C. S.
,
2005
, “
An Adaptive Fuzzy Observer-Based Approach for Chaotic Synchronization
,”
Int. J. Approximate Reasoning
,
39
(
1
), pp.
97
114
.10.1016/j.ijar.2004.10.011
32.
Hyun
,
C. H.
,
Kim
,
J. H.
,
Kim
,
E.
, and
Park
,
M.
,
2006
, “
Adaptive Fuzzy Observer Based Synchronization Design and Secure Communications of Chaotic Systems
,”
Chaos, Solitons & Fractals
,
27
(
4
), pp.
930
940
.10.1016/j.chaos.2005.04.056
33.
Li
,
H.
,
Liu
,
H.
,
Gao
,
H.
, and
Shi
,
P.
,
2012
, “
Reliable Fuzzy Control For Active Suspension Systems With Actuator Delay and Fault
,”
IEEE Trans. Fuzzy Systems
,
20
(
2
), pp.
342
357
.10.1109/TFUZZ.2011.2174244
34.
Azemi
,
A.
, and
Yaz
,
E. E.
,
2000
, “
Sliding-Mode Adaptive Observer Approach to Chaotic Synchronization
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
4
), pp.
758
765
.10.1115/1.1320449
35.
Treesatayapun
,
C.
, and
Uatrongjit
,
S.
,
2005
, “
Controlling Chaos by Hybrid System Based on FREN and Sliding Mode Control
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
2
), pp.
352
358
.10.1115/1.2194071
36.
Yau
,
H. T.
, and
Chen
,
C. L.
,
2006
, “
Chattering-Free Fuzzy Sliding-Mode Control Strategy for Uncertain Chaotic Systems
,”
Chaos, Solitons & Fractals
,
30
(
3
), pp.
709
718
.10.1016/j.chaos.2006.03.077
37.
Roopaei
,
M.
, and
Zolghadri Jahromi
,
M.
,
2008
, “
Synchronization of Two Different Chaotic Systems Using Novel Adaptive Fuzzy Sliding Mode Control
,”
Chaos
,
18
(
3
), p.
033133
.10.1063/1.2980046
38.
Roopaei
,
M.
,
Zolghadri Jahromi
,
M.
, and
Jafari
,
S.
,
2009
, “
Adaptive Gain Fuzzy Sliding Mode Control for the Synchronization of Nonlinear Chaotic Gyros
,”
Chaos
,
19
(
1
), p.
013125
.10.1063/1.3072786
39.
Noroozi
,
N.
,
Roopaei
,
M.
, and
Jahromi
,
M. Z.
,
2009
, “
Adaptive Fuzzy Sliding Mode Control Scheme for Uncertain Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
11
), pp.
3978
3992
.10.1016/j.cnsns.2009.02.015
40.
Roopaei
,
M.
,
Zolghadri Jahromi
,
M.
,
John
,
R.
, and
Lin
,
T. C.
,
2010
, “
Unknown Nonlinear Chaotic Gyros Synchronization Using Adaptive Fuzzy Sliding Mode Control With Unknown Dead-Zone Input
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
9
), pp.
2536
2545
.10.1016/j.cnsns.2009.09.022
41.
Wu
,
L.
,
Shi
,
P.
, and
Gao
,
H.
,
2010
, “
State Estimation and Sliding-Mode Control of Markovian Jump Singular Systems
,”
IEEE Trans. Automatic Control
,
55
(
5
), pp.
1213
1219
.10.1109/TAC.2010.2051090
42.
Wang
,
Y. W.
,
Guan
,
Z. H.
, and
Wang
,
H. O.
,
2003
, “
LMI-Based Fuzzy Stability and Synchronization of Chen's System
,”
Phys. Lett. A
,
320
(
2–3
), pp.
154
159
.10.1016/j.physleta.2003.10.074
43.
Ahn
,
C. K.
,
2010
, “
Fuzzy Delayed Output Feedback Synchronization for Time-Delayed Chaotic Systems
,”
Nonlinear Anal.: Hybrid Syst.
,
4
(
1
), pp.
16
24
.10.1016/j.nahs.2009.07.002
44.
Zheng
,
Y.
, and
Chen
,
G.
,
2009
, “
Fuzzy Impulsive Control of Chaotic Systems Based on TS Fuzzy Model
,”
Chaos, Solitons & Fractals
,
39
(
4
), pp.
2002
2011
.10.1016/j.chaos.2007.06.061
45.
Lu
,
J. G.
, and
Hill
,
D. J.
,
2007
, “
Impulsive Synchronization of Chaotic Lur'e Systems by Linear Static Measurement Feedback: An LMI Approach
,”
IEEE Trans. Circuits and Systems—II: Express Briefs
,
54
(
8
), pp.
710
714
.10.1109/TCSII.2007.898468
46.
Chen
,
C. S.
,
2009
, “
Quadratic Optimal Neural Fuzzy Control for Synchronization of Uncertain Chaotic Systems
,”
Expert Systems With Applications
,
36
(
9
), pp.
11827
11835
.10.1016/j.eswa.2009.04.007
47.
Chen
,
C. S.
, and
Chen
,
H. H.
,
2009
, “
Robust Adaptive Neural-Fuzzy-Network Control for the Synchronization of Uncertain Chaotic Systems
,”
Nonlinear Analysis: Real World Applications
,
10
(
3
), pp.
1466
1479
.10.1016/j.nonrwa.2008.01.016
48.
Fradkov
,
A. L.
,
Nijmeijer
,
H.
, and
Pogromsky
,
A.
,
1999
, “Adaptive Observer–Based Synchronization,” Control of Bifurcations and Chaos in Engineering Sciences, G. Chen, ed.,
CRC Press
,
Boca Raton
, FL, Chap. 19.
49.
Fradkov
,
A.
,
Nijmeijer
,
H.
, and
Markov
,
A.
,
2000
, “
Adaptive Observer-Based Synchronization for Communication
,”
Int. J. Bifurcation Chaos
,
10
(
12
), pp.
2807
2813
.10.1142/S0218127400001869
50.
Millerioux
,
G.
, and
Daafouz
,
J.
,
2003
, “
An Observer-Based Approach for Input-Independent Global Chaos Synchronization of Discrete-Time Switched Systems
,”
IEEE Trans. Circuits and Systems—I: Fundamental and Applications
,
50
(
10
), pp.
1270
1279
.10.1109/TCSI.2003.816301
51.
Fridman
,
E.
,
Seuret
,
A.
, and
Richard
,
J. P.
,
2004
, “
Robust Sampled-Data Stabilization of Linear Systems: An Input Delay Approach
,”
Automatica
,
40
(
8
), pp.
1441
1446
.10.1016/j.automatica.2004.03.003
52.
Lam
,
H. K.
, and
F. L. F. H.
,
2007
, “
Sampled-Data Fuzzy Controller for Time-Delay Nonlinear System: LMI-Based and Fuzzy-Model-Based Approaches
,”
IEEE Trans. Syst., Man and Cybern., Part B: Cybernetics
,
37
(
3
), pp.
617
629
.10.1109/TSMCB.2006.889629
53.
Gao
,
H.
,
Meng
,
X.
, and
Chen
,
T.
,
2008
, “
Stabilization of Networked Control Systems With a New Delay Characterization
,”
IEEE Trans. Automatic Control
,
53
(
9
), pp.
2142
2148
.10.1109/TAC.2008.930190
54.
Gao
,
H.
,
Chen
,
T.
, and
Lam
,
J.
,
2008
, “
A New Delay System Approach to Network-Based Control
,”
Automatica
,
44
(
1
), pp.
39
52
.10.1016/j.automatica.2007.04.020
55.
Gao
,
H.
, and
Chen
,
T.
,
2008
, “
Network-Based H∞ Output Tracking Control
,”
IEEE Trans. Autom. Control
,
53
(
3
), pp.
655
667
.10.1109/TAC.2008.919850
56.
Gao
,
H.
,
Wu
,
J.
, and
Shi
,
P.
,
2009
, “
Robust Sampled-Data
H∞
Control With Stochastic Sampling
,”
Automatica
,
45
(
7
), pp.
1729
1736
.10.1016/j.automatica.2009.03.004
57.
Lam
,
H. K.
,
2009
, “
Stability Analysis of Sampled-Data Fuzzy Controller for Nonlinear Systems Based on Switching T-S Fuzzy Model
,”
Nonlinear Analysis: Hybrid Systems
,
3
(
4
), pp.
418
432
.10.1016/j.nahs.2009.02.011
58.
Lam
,
H. K.
,
2010
, “
Sampled-Data Fuzzy-Model-Based Control Systems: Stability Analysis With Consideration of Analogue-To-Digital Converter and Digital-To-Analogue Converter
,”
IET Control Theory Appl.
,
4
(
7
), pp.
1131
1144
.10.1049/iet-cta.2008.0599
59.
Shen
,
B.
,
Wang
,
Z.
,
Liang
,
J.
, and
Liu
,
X.
,
2011
, “
Sampled-Data H∞ Filtering for Stochastic Genetic Regulatory Networks
,”
Int. J. Robust Nonlinear Control.
,
21
(
15
), pp.
1759
1777
.10.1002/rnc.1703
60.
Shen
,
B.
,
Wang
,
Z.
, and
Liu
,
X.
,
2011
, “
A Stochastic Sampled-Data Approach to Distributed H∞ Filtering in Sensor Networks
,”
IEEE Trans. Circuits and Systems—I: Regular Papers
,
958
, pp.
2237
2246
.10.1109/TCSI.2011.2112594
61.
Liu
,
M.
,
You
,
J.
, and
Ma
,
X.
,
2011
,
“H∞ Filtering for Sampled-Data Stochastic Systems With Limited Capacity Channel
,”
Signal Processing
,
91
(8), pp.
1826
1837
.10.1016/j.sigpro.2011.02.006
62.
Lam
,
H. K.
,
2011
, “
Output-Feedback Sampled-Data Polynomial Controller for Nonlinear Systems
,”
Automatica
,
47
(
11
), pp.
2457
2461
.10.1016/j.automatica.2011.08.009
63.
Lam
,
H. K.
,
2012
, “
Stabilization of Nonlinear Systems Using Sampled-Data Output-Feedback Fuzzy Controller Based on Polynomial-Fuzzy-Model-Based Control Approach
,”
IEEE Trans. Syst., Man and Cybern., Part B: Cybernetics
,
42
(
1
), pp.
258
267
.10.1109/TSMCB.2011.2163796
64.
Li
,
H.
,
Jing
,
X.
, and
Karimi
,
H. R.
,
2014
, “
Output-Feedback Based H∞ Control for Active Suspension Systems With Control Delay
,”
IEEE Trans. Indus. Electron.
,
61
(
1
), pp.
436
446
.10.1109/TIE.2013.2242418
65.
Lam
,
H. K.
, and
Seneviratne
,
L. D.
,
2008
, “
Chaotic Synchronization Using Sampled-Data Fuzzy Controller Based on Fuzzy-Model-Based Approach
,”
IEEE Trans. Circuits and Systems—I: Regular Papers
,
55
(
3
), pp.
883
892
.10.1109/TCSI.2008.916413
66.
Lu
,
J. G.
, and
Hill
,
D. J.
,
2008
, “
Global Asymptotical Synchronization of Chaotic Lur'e Systems Using Sampled Data: A Linear Matrix Inequality Approach
,”
IEEE Trans. Circuits and Systems—II: Express Briefs
,
55
(
6
), pp.
586
590
.10.1109/TCSII.2007.916788
67.
Zhang
,
C. K.
,
He
,
Y.
, and
Wu
,
M.
,
2009
, “
Improved Global Asymptotical Synchronization of Chaotic Lur'e Systems With Sampled-Data Control
,”
IEEE Trans. Circuits and Systems—II: Express Briefs
,
56
(
4
), pp.
320
324
.10.1109/TCSII.2009.2015388
68.
Gao
,
H.
, and
Chen
,
T.
,
2007
, “
Stabilization of Nonlinear Systems Under Variable Sampling: A Fuzzy Control Approach
,”
IEEE Trans. Fuzzy Systems
,
15
(
5
), pp.
972
983
.10.1109/TFUZZ.2006.890660
69.
Prajna
,
S.
,
Papachristodoulou
,
A.
, and
Parrilo
,
P. A.
,
2002
, “
Introducing SOSTOOLS: A General Purpose Sum of Squares Programming Solver
,”
Proceedings of the 41st IEEE Conference on Decision and Control
, Las Vegas, NV, December 10–13, Vol.
1
, pp.
741
746
.10.1109/CDC.2002.1184594
70.
Prajna
,
S.
,
Papachristodoulou
,
A.
, and
Parrilo
,
P. A.
,
2004
, “
Nonlinear Control Synthesis by Sum-Of-Squares Optimization: A Lyapunov-Based Approach
,”
5th Asian Control Conference
, Melbourne, Australia, July 20–23, Vol.
1
, pp.
157
165
.
71.
Papachristodoulou
,
A.
, and
Prajna
,
S.
,
2005
, “
A Tutorial on Sum of Squares Techniques for System Analysis
,”
Proceedings of the American Control Conference (ACC), Portland, OR, June 8–10
, pp.
2686
2700
.10.1109/ACC.2005.1470374
72.
Prajna
,
S.
,
Papachristodoulou
,
A.
, and
Parrilo
,
P. A.
,
2002
, “
SOSTOOLS—Sum of Squares Optimization Toolbox, Users Guide
,” available at http://www.cds.caltech.edu/sostools.
73.
Lian
,
K. Y.
,
Liu
,
P.
,
Wu
,
T. C.
, and
Lin
,
W. C.
,
2002
, “
Chaotic Control Using Fuzzy Model-Based Methods
,”
Int. J. Bifurcation and Chaos
,
12
(
8
), pp.
1827
1841
.10.1142/S0218127402005479
74.
Lam
,
H. K.
, and
Seneviratne
,
L. D.
,
2009
, “
Tracking Control of Sampled-Data Fuzzy-Model-Based Control Systems
,”
IET Control Theory Appl.
,
3
(
1
), pp.
56
67
.10.1049/iet-cta:20070466
75.
Lam
,
H. K.
, and
Li
,
H.
,
2013
, “
Output-Feedback Tracking Control for Polynomial Fuzzy-Model-Based Control Systems
,”
IEEE Trans. Indus. Electron.
,
60
(12), pp. 5830–5840.10.1109/TIE.2012.2229679
76.
Yin
,
S.
,
Ding
,
S. X.
,
Abandan Sari
,
A. H.
, and
Hao
,
H.
,
2012
, “
Data-Driven Monitoring for Stochastic Systems and Its Application on Batch Process
,”
Int. J. Syst. Sci.
,
44
(
7
), pp.
1366
1376
.10.1080/00207721.2012.659708
77.
Yin
,
S.
,
Ding
,
S. X.
,
Haghani
,
A.
,
Hao
,
H.
, and
Zhang
,
P.
,
2012
, “
A Comparison Study of Basic Data-Driven Fault Diagnosis and Process Monitoring Methods on the Benchmark Tennessee Eastman Process
,”
J. Process Control
,
22
(
9
), pp.
1567
1581
.10.1016/j.jprocont.2012.06.009
78.
Yin
,
S.
,
Luo
,
H.
, and
Ding
,
S. X.
,
2013
, “
Real-Time Implementation of Fault-Tolerant Control Systems With Performance Optimization
,”
IEEE Trans. Indus. Electron.
,
61
(
5
), pp.
2402
2411
.10.1109/TIE.2013.2273477
You do not currently have access to this content.