Abstract

We present a control design method for nonlinear partial differential equations (PDEs) based on a combination of gain scheduling and backstepping theory for linear PDEs. A benchmark first-order hyperbolic system with an in-domain nonlinearity is considered first. For this system a nonlinear feedback law, based on gain scheduling, is derived explicitly, and a proof of local exponential stability, with an estimate of the region of attraction, is presented for the closed-loop system. Control designs (without proofs) are then presented for a string PDE and a shear beam PDE, both with Kelvin–Voigt (KV) damping and free-end nonlinearities of a potentially destabilizing kind. String and beam simulation results illustrate the merits of the gain scheduling approach over the linearization based design.

References

1.
Boskovic
,
D.
, and
Krstic
,
M.
, 2001, “
Nonlinear Stabilization of a Thermal Convection Loop by State Feedback
,”
Automatica
,
37
, pp.
2033
2040
.
2.
Boskovic
,
D.
, and
Krstic
,
M.
, 2002, “
Backstepping Control of Chemical Tubular Reactors
,”
Comput. Chem. Eng.
,
26
, pp.
1077
1085
.
3.
Boskovic
,
D.
, and
Krstic
,
M.
, 2003, “
Stabilization of a Solid Propellant Rocket Instability by State Feedback
,”
Int. J. Robust Nonlinear Control
,
13
, pp.
483
495
.
4.
Armaou
,
A.
, and
Christofides
,
P. D.
, 2000, “
Wave Suppression by Nonlinear Finite-Dimensional Control
,”
Comput. Chem. Eng.
,
55
(
14
), pp.
2627
2640
.
5.
Armaou
,
A.
, 2004, “
Output Feedback Control of Dissipative Distributed Processes Via Microscopic Simulations
,”
Comput. Chem. Eng.
,
29
(
4
), pp.
771
782
.
6.
Varshney
,
A.
,
Pitchaiah
,
S.
, and
Armaou
,
A.
, 2009, “
Feedback Control of Dissipative PDE Systems Using Adaptive Model Reduction
,”
AIChE J.
,
55
(
4
), pp.
906
918
.
7.
Christofides
,
P. D.
, 2001,
Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes
,
Birkhäuser
,
Boston, MA
.
8.
Kugi
,
A.
,
Thull
,
D.
, and
Kuhnen
,
K.
, 2006, “
An Infinite-Dimensional Control Concept for Piezoelectric Structures With Complex Hysteresis
,”
Struct. Control Health Monit.
,
13
, pp.
1099
1119
.
9.
Meurer
,
T.
, and
Zeitz
,
M.
, 2005, “
Feedforward and Feedback Tracking Control of Nonlinear Diffusion-Convection-Reaction Systems Using Summability Methods
,”
Ind. Eng. Chem. Res.
,
44
, pp.
2532
2548
.
10.
Banach
,
A. S.
, and
Baumann
,
W. T.
, 1990, “
Gain-Scheduled Control of Nonlinear Partial Differential Equations
,”
Proceedings of the Conference on Decision and Control
, pp.
387
392
.
11.
Vazquez
,
R.
, and
Krstic
,
M.
, 2008, “
Control of 1-D Parabolic PDEs With Volterra Nonlinearities—Part I: Design
,”
Automatica
,
44
, pp.
2778
2790
.
12.
Vazquez
,
R.
, and
Krstic
,
M.
, 2008, “
Control of 1-D Parabolic PDEs With Volterra Nonlinearities—Part II: Analysis
,”
Automatica
,
44
, pp.
2791
2803
.
13.
Cloutier
,
J. R.
, 1997, “
State-Depedent Riccati Equation Techniques: An Overview
,” Proceedings of the American Control Conference, pp.
932
936
.
14.
Cloutier
,
J. R.
, and
Stansbery
,
D. T.
, 1999, “
Control of a Continuously Stirred Tank Reactor Using an Asymmetric Solution of the State-Dependent Riccati equation
,” Proceedings of the IEEE International Conference on Control Applications, pp.
893
898
.
15.
Cloutier
,
J. R.
, and
Stansbery
,
D. T.
, 2002, “
The Capabilities and Art of State-Dependent Riccati Equation-Based Design
,” Proceedings of the American Control Conference, pp.
86
91
.
16.
Khalil
,
H. K.
, 2002,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
17.
Rugh
,
W. J.
, 1990, “
Analytical Framework for Gain Scheduling
,” Proceedings of the American Control Conference, pp.
79
84
.
18.
Rugh
,
W. J.
, and
Shamma
,
J. S.
, 2000, “
Research on Gain Scheduling
,”
Automatica
,
36
, pp.
1401
1425
.
19.
Shamma
,
J. S.
, and
Athans
,
M.
, 1990, “
Analysis of Gain Scheduled Control for Nonlinear Plants
,”
IEEE Trans. Autom. Control
,
35
(
8
), pp.
898
907
.
20.
Shamma
,
J. S.
, and
Athans
,
M.
, 1991. “
Gain Scheduling: Potential Hazards and Possible Remedies
,” Proceedings of the American Control Conference, pp.
101
107
.
21.
Shamma
,
J. S.
, and
Athans
,
M.
, 1991, “
Guaranteed Properties of Gain Scheduled Control for Linear Parameter-Varying Plants
,”
Automatica
,
27
(
3
), pp.
559
564
.
22.
Shamma
,
J. S.
, and
Cloutier
,
J. R.
, 2003, “
Existence of SDRE Stabilizing Feedback
,”
IEEE Trans. Autom. Control
,
48
, pp.
513
517
.
23.
Wang
,
J.
, and
Rugh
,
W. J.
, 1987, “
Feedback Linearization Families for Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
32
(
10
), pp.
935
940
.
24.
Wang
,
J.
, and
Rugh
,
W.J.
, 1987, “
Parameterized Linear Systems and Linearization Families for Nonlinear Systems
,”
IEEE Trans. Circuits Syst.
,
34
(
6
), pp.
650
657
.
25.
Krstic
,
M.
, and
Smyshlyaev
,
A.
, 2008,
Boundary Control of PDEs: A Course on Backstepping Designs
,
SIAM
,
Philadelphia, PA
.
26.
Krstic
,
M.
, and
Smyshlyaev
,
A.
, 2008, “
Backstepping Boundary Control for First-Order Hyperbolic PDEs and Application to Systems With Actuator and Sensor Delays
,”
Syst. Control Lett.
,
57
, pp.
750
758
.
27.
Krstic
,
M.
,
Guo
,
B.-Z.
,
Balogh
,
A.
, and
Smyshlyaev
,
A.
, 2008, “
Output-Feedback Stabilization of an Unstable Wave Equation
,”
Automatica
,
44
, pp.
63
74
.
28.
Krstic
,
M.
,
Siranosian
,
A. A.
,
Balogh
,
A.
, and
Guo
,
B.-Z.
, 2007, “
Control of Strings and Flexible Beams by Backstepping Boundary Control
,” Proceedings of the American Control Conference.
29.
Siranosian
,
A. A.
,
Krstic
,
M.
,
Smyshlyaev
,
A.
, and
Bement
,
M.
, 2008, “
Motion Planning and Tracking for Tip displacement and Deflection Angle for Flexible Beams
,” Proceedings of the American Control Conference.
30.
Siranosian
,
A. A.
,
Krstic
,
M.
,
Smyshlyaev
,
A.
, and
Bement
,
M.
, 2009, “
Motion Planning and Tracking for Tip Displacement and Deflection Angle for Flexible Beams
,”
ASME J. Dyn.Syst., Meas., Control
,
131
, p.
031009
.
31.
Krstic
,
M.
,
Guo
,
B.-Z.
,
Balogh
,
A.
, and
Smyshlyaev
,
A.
, 2008, “
Control of a Tip-Force Destabilized Shear Beam by Observer-Based Boundary Feedback
,”
SIAM J. Control Optim.
,
47
, pp.
553
574
.
32.
Krstic
,
M.
, and
Balogh
,
A.
, 2006, “
Backstepping Boundary Controller and Observer for the Undamped Shear Beam
,” 17th International Symposium on Mathematical Theory of Networks and Systems.
33.
Krstic
,
M.
,
Siranosian
,
A. A.
, and
Smyshlyaev
,
A.
, 2006, “
Backstepping Boundary Controllers and Observers for the Slender Timoshenko beam: Part I—Design
,” Proceedings of the American Control Conference.
34.
Krstic
,
M.
,
Siranosian
,
A. A.
,
Smyshlyaev
,
A.
, and
Bement
,
M.
, 2006, “
Backstepping Boundary Controllers and Observers for the Slender Timoshenko beam: Part II—Stability and Simulations
,” Proceedings of the IEEE Conference on Decision and Control.
35.
Han
,
S. M.
,
Benaroya
,
H.
, and
Wei
,
T.
, 1999, “
Dynamics of Transversely Vibrating Beams using four engineering theories
,”
J. Sound Vib.
,
225
, pp.
935
988
.
36.
Zhao
,
H. L.
,
Liu
,
K. S.
, and
Zhang
,
C. G.
, 2004, “
Stability for the Timoshenko Beam System With Local Kelvin–Voigt damping
,”
Acta Math. Sin. English Ser.
,
21
(
3
), pp.
655
666
.
You do not currently have access to this content.