A practical numerical procedure is introduced for determining the stability robustness map of a general class of higher order linear time invariant systems with three independent delays, against uncertainties in the delays. The procedure is based on an efficient and exhaustive frequency-sweeping technique within a single loop. This operation results in determination of the complete description of the kernel and the offspring hypersurfaces, which constitute exhaustively the potential stability switching loci in the space of the delays. The new numerical procedure corresponds to the first step in the overarching framework, called the cluster treatment of characteristic roots. The results of this treatment can also be represented in another domain (called the spectral delay space) within a finite dimensional cube called the building block, which is much simpler to view and analyze. The paper also offers several case studies to demonstrate the practicality of the new numerical methodology.

1.
Niculescu
,
S. -I.
, and
Michiels
,
W.
, 2004, “
Stabilizing a Chain of Integrators Using Multiple Delays
,”
IEEE Trans. Autom. Control
0018-9286,
49
, pp.
802
807
.
2.
Michiels
,
W.
, and
Roose
,
D.
, 2001, “
Global Stabilization of Multiple Integrators With Time Delay and Input Constraints
,”
Proceedings of the Third IFAC Workshop on Time-Delay Systems
, Santa Fe, pp.
266
271
.
3.
Chen
,
J.
, and
Niculescu
,
S. -I.
, 2004, “
Robust Stability of Quasipolynomials: Vertex-Type Tests and Extensions
,”
American Control Conference
, Vol.
5
, pp.
4159
4164
.
4.
Chen
,
J.
,
Niculescu
,
S. -I.
, and
Fu
,
P.
, 2008, “
Robust Stability of Quasipolynomials: Frequency-Sweeping Conditions and Vertex Tests
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
4
), pp.
1640
1645
.
5.
Bozorg
,
M.
, and
Davison
,
E. J.
, 2006, “
Control of Time Delay Processes With Uncertain Delays: Time delay Stability Margins
,”
J. Process Control
0959-1524,
16
, pp.
403
408
.
6.
Olgac
,
N.
, and
Sipahi
,
R.
, 2004, “
A Practical Method For Analyzing the Stability of Neutral Type LTI-Time Delayed Systems
,”
Automatica
0005-1098,
40
, pp.
847
853
.
7.
Sipahi
,
R.
, and
Olgac
,
N.
, 2005, “
Complete Stability Map of Third Order LTI, Multiple Time Delay Systems
,”
Automatica
0005-1098,
41
, pp.
1413
1420
.
8.
Olgac
,
N.
, and
Sipahi
,
R.
, 2002, “
An Exact Method for the Stability Analysis of Time Delayed LTI Systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
, pp.
793
797
.
9.
Sipahi
,
R.
, and
Olgac
,
N.
, 2003, “
Degenerate Cases in Using Direct Method
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
, pp.
194
201
.
10.
Sipahi
,
R.
, and
Olgac
,
N.
, 2003, “
Active Vibration Suppression With Time Delayed Feedback
,”
ASME J. Vibr. Acoust.
0739-3717,
125
, pp.
384
388
.
11.
Toker
,
O.
, and
Ozbay
,
H.
, 1996, “
Complexity Issues in Robust Stability of Linear Delay-Differential Systems
,”
Math. Control, Signals, Syst.
0932-4194,
9
, pp.
386
400
.
12.
Hsu
,
C. S.
, and
Bhatt
,
K. L.
, 1966, “
Stability Charts for Second-Order Dynamical Systems With Time Lag
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
119
124
.
13.
Rekasius
,
Z. V.
, 1980, “
A Stability Test for Systems With Delays
,”
Proceedings of the Joint Automatic Control Conference
, Paper No. TP9-A.
14.
Cooke
,
K. L.
, and
van den Driessche
,
P.
, 1986, “
On Zeros of Some Transcendental Equations
,”
Funkc. Ekvac.
0532-8721,
29
, pp.
77
90
.
15.
Chen
,
J.
,
Gu
,
G.
, and
Nett
,
C. N.
, 1995, “
A New Method for Computing Delay Margins for Stability of Linear Delay Systems
,”
Syst. Control Lett.
0167-6911,
26
, pp.
107
117
.
16.
MacDonald
,
N.
, 1987, “
An Interference Effect of Independent Delays
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
134
, pp.
38
42
.
17.
Stepan
,
G.
, 1989,
Retarded Dynamical Systems: Stability and Characteristic Function
,
Longman
,
New York
/
Wiley
,
New York
.
18.
Hale
,
J. K.
, and
Huang
,
W.
, 1993, “
Global Geometry of the Stable Regions for Two Delay Differential Equations
,”
J. Math. Anal. Appl.
0022-247X,
178
, pp.
344
362
.
19.
Niculescu
,
S. -I.
, 2002, “
On Delay Robustness Analysis of a Simple Control Algorithm in High-Speed Networks
,”
Automatica
0005-1098,
38
, pp.
885
889
.
20.
Michiels
,
W.
, and
Niculescu
,
S. -I.
, 2003, “
On the Delay Sensitivity of Smith Predictors
,”
Int. J. Syst. Sci.
0020-7721,
34
, pp.
543
551
.
21.
Mazenc
,
F.
,
Mondie
,
S.
, and
Niculescu
,
S. I.
, 2003, “
Global Asymptotic Stabilization for Chains of Integrators With a Delay in the Input
,”
IEEE Trans. Autom. Control
0018-9286,
48
, pp.
57
63
.
22.
Gu
,
K.
,
Niculescu
,
S. -I.
, and
Chen
,
J.
, 2005, “
On Stability Crossing Curves for General Systems With Two Delays
,”
J. Math. Anal. Appl.
0022-247X,
311
, pp.
231
253
.
23.
Sipahi
,
R.
, and
Olgac
,
N.
, 2004, “
A Novel Stability Study on Multiple Time-Delay Systems (MTDS) Using the Root Clustering Paradigm
,”
American Control Conference
, Boston, MA.
24.
Olgac
,
N.
, and
Sipahi
,
R.
, 2005, “
A Unique Methodology for Chatter Stability Mapping in Simultaneous Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
, pp.
791
800
.
25.
Hale
,
J. K.
, and
Verduyn Lunel
,
S. M.
, 1993,
An Introduction to Functional Differential Equations
,
Springer-Verlag
,
New York
.
26.
Fazelinia
,
H.
,
Sipahi
,
R.
, and
Olgac
,
N.
, 2007, “
Stability Analysis of Multiple Time Delayed Systems Using ‘Building Block’ Concept
,”
IEEE Trans. Autom. Control
0018-9286,
52
(
5
), pp.
799
810
.
You do not currently have access to this content.