The compensation for friction or joint losses in robotic manipulators contributes to an important improvement of the control quality. Besides appropriate friction modeling, experimental identification of the model parameters is fundamental toward better control performance. Conventionally steady-state friction characteristics are investigated for mechanical systems in the first step. However, and due to the high kinematic coupling, such procedure is already complicated for complex multiple closed-loop mechanisms, like parallel manipulators. Actuation friction of such mechanisms becomes configuration dependent. This paper presents a methodology that deals with such challenge. The kinematic coupling is regarded in the friction model and therefore in the design of the experimental identification. With the proposed strategy, it is possible to identify the steady-state friction parameters independently from any knowledge about inertial or rigid-body dynamics. Friction models for sensorless passive joints can also be provided. Besides, the method is kept very practical, since there is no need for any additional hardware devices or interfaces than a standard industrial control. The suitability for the industrial field is proven by experimental application to PaLiDA that is a six degrees of freedom parallel manipulator equipped with linear directly driven actuators.

1.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
Canudas de Wit
,
C.
, 1994,
Automatica
0005-1098,
30
, p.
1083
.
2.
de Wit
,
C. C.
,
Olsson
,
H.
,
Åstrm
,
K.
, and
Lischinsky
,
P.
, 1995,
IEEE Trans. Control Syst. Technol.
1063-6536,
40
, p.
419
.
3.
de Wit
,
C. C.
, and
Lischinsky
,
P.
1997,
Int. J. Adapt. Control Signal Process.
0890-6327,
11
, p.
65
.
4.
Swevers
,
J.
,
Al-Bender
,
F.
,
Ganseman
,
C. G.
, and
Prajogo
,
T.
, 2000,
IEEE Trans. Autom. Control
0018-9286,
45
, p.
675
.
5.
Grotjahn
,
M.
, and
Heimann
,
B.
, 2002,
Int. J. Robot. Res.
0278-3649,
21
, p.
99
.
6.
de Wit
,
P.
,
Noel
,
P.
,
Aubin
,
A.
, and
Brogliato
,
B.
, 2002,
Int. J. Robot. Res.
0278-3649,
10
, p.
189
.
7.
Zhu
,
Y.
, and
Pagilla
,
P. R.
, 2002,
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
, Washington, DC, pp.
2644
2649
.
8.
Lischinsky
,
P.
,
de Wit
,
C. C.
, and
Morel
,
G.
, 1999,
IEEE Control Syst. Mag.
0272-1708,
19
, p.
25
.
9.
Kostic
,
D.
,
de Jager
,
B.
,
Steinbuch
,
M.
, and
Hensen
,
R.
, 2004,
IEEE Trans. Control Syst. Technol.
1063-6536,
12
p.
904
.
10.
Bona
,
B.
, and
Indri
,
M.
, 2005,
Proceedings of the 44th IEEE Conference on Decision and Control, CDC-ECC05
, Seville, Spain, pp.
4360
4367
.
11.
Tomei
,
P.
, 2000,
IEEE Trans. Autom. Control
0018-9286,
45
, p.
2164
.
12.
Kozlowski
,
K.
, and
Dutkiewicz
,
P.
, 1995,
Proceedings of the International Symposium on Measurement and Control in Robotics
, pp.
301
306
.
13.
Bona
,
B.
, and
Curatella
,
A.
, 2005,
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
, Barcelona, Spain, pp.
1693
1698
.
14.
Swevers
,
J.
,
Gansemann
,
C.
,
d. Schutter
,
J.
, and
v. Brussel
,
H.
, 1996,
Mech. Syst. Signal Process.
0888-3270,
10
p.
561
.
15.
Grotjahn
,
M.
,
Heimann
,
B.
, and
Abdellatif
,
H.
, 2003,
Multibody Syst. Dyn.
1384-5640,
11
, p.
273
.
16.
Harib
,
K.
, and
Srinivasan
,
K.
, 2003,
Robotica
0263-5747,
21
, p.
541
.
17.
Pruefer
,
M.
, and
Wahl
,
F. M.
, 1994,
Proceedings of the Fourth IFAC Symposium on Robot Control
, Capri, Italy, pp.
551
556
.
18.
Pfeifer
,
F.
, and
Hölzl
,
J.
, 1995,
Proceedings of the 1995 IEEE International Conference on Robotics and Automation
, Nagoya, Japan, pp.
1468
1476
.
19.
Merlet
,
J.-P.
, 2000, Parallel Robots,
Solid Mechanics and its Applications
,
Kluwer Academic Publishers
, Dordrecht.
20.
Khalil
,
W.
, and
Guegan
,
S. D.
, 2002,
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
, Washington, DC, USA, pp.
817
822
.
21.
Yiu
,
Y.
,
Cheng
,
H.
,
Xiong
,
Z.
,
Liu
,
G.
, and
Li
,
Z.
, 2001,
Proceedings of the 2001 IEEE International Conference on Robotics and Automation, ICRA2003
, Seoul, Korea, pp.
3766
3771
.
22.
Grotjahn
,
M.
,
Kuehn
,
J.
,
Heimann
,
B.
, and
Grendel
,
H.
, 2002,
Proceedings of the 14th CISM-IFToMM Symposium on the Theory and Practice of Robots and Manipulators (RoManSy)
, Udine, Italy, pp.
67
76
.
23.
Ljung
,
L.
, 1999,
System Identification: Theory for the User
, 2nd ed.,
Prentice-Hall
, Upper Saddle Hall, NJ.
24.
Nelles
,
O.
, 2001,
Nonlinear System Identification
,
Springer
, Berlin.
25.
Tönshoff
,
H.
,
Grendel
,
H.
, and
Grotjahn
,
M.
, 2002, in
Development Methods and Application Experience Of Parallel Kinematics—The 3rd Chemnitz Parallel Kinematics Seminar PKS 2002/2002 Parallel Kinematic Machines International Conference
,
R.
Neugebauer
, ed., Verlag Wissenschaftliche Scripten, Zwickau, pp.
335
350
.
You do not currently have access to this content.