Simulations and physical robots have shown that hopping and running are possible without sensory feedback. However, stable behavior is often limited to a certain range of the parameters of the open-loop system. Even the simplest of hopping systems can exhibit unstable behavior that results in unpredictable nonperiodic motion as system parameters are adjusted. This paper analyzes the stability of a simplified vertical hopping model driven by an open-loop, feedforward motor pattern. Periodic orbits of the resulting hybrid system are analyzed through a generalized formula for the system’s Poincare Map and Jacobian. The observed behavior is validated experimentally in a physical pneumatically actuated hopping machine. This approach leads to observations on the stability of this and similar systems, revealing inherent limitations of open-loop hopping and providing insights that can inform the design and control of dynamic legged robots capable of rapid and robust locomotion.

1.
Rossignol
,
S.
,
Lund
,
J. P.
, and
Drew
,
T.
, “
The Role of Sensory Inputs in Regulating Patterns of Rhythmical Movements in Higher Vertebrates
,” 1998, in
Neural Control of Rhythmic Movements in Vertebrates
,
A. H.
Cohen
,
S.
Rossignol
, and
S.
Grilner
, eds.,
John Wiley & Sons
,
Hoboken, NJ
.
2.
MacKay-Lyons
,
M.
, 2002, “
Central Pattern Generation of Locomotion: A Review of the Evidence
,”
Phys. Ther.
0031-9023,
82
(
1
), pp.
69
83
.
3.
Dietz
,
V.
,
Schmidtbleicher
,
D.
, and
Noth
,
J.
, 1979, “
Neuronal Mechanisms of Human Locomotion
,”
J. Neurophysiol.
0022-3077,
42
(
5
), pp.
1212
1222
.
4.
Orlosvky
,
G. N.
,
Deliagnia
,
T. G.
, and
Grilner
,
S.
, 1999,
Neuronal Control of Locomotion
,
Oxford University Press
, New York.
5.
Cham
,
J. G.
,
Bailey
,
S. A.
,
Clark
,
J. E.
,
Full
,
R. J.
, and
Cutkosky
,
M. R.
, 2002, “
Fast and Robust: Hexapedal Robots via Shape Deposition Manufacturing
,”
Int. J. Robot. Res.
0278-3649,
21
(
10
), pp.
869
883
.
6.
Saranli
,
U.
,
Buehler
,
M.
, and
Koditschek
,
D. E.
, 2001, “
RHex: A Simple and Highly Mobile Hexapod Robot
,”
Int. J. Robot. Res.
0278-3649,
20
, pp.
616
631
.
7.
McGeer
,
T.
, 1990, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
0278-3649,
9
(
2
), pp.
62
82
.
8.
McMahon
,
T. A.
, 1999,
Muscles, Reflexes and Locomotion
,
University Press
, Princeton, NJ.
9.
Brown
,
I. E.
, and
Loeb
,
G. E.
, 1999, “
A Reductionist Approach to Creating and Using Neuromusculoskeletal Models
,” in
Biomechanics and Neural Control of Posture and Movement
,
Springer
,
New York
.
10.
Kubow
,
T. M.
, and
Full
,
R. J.
, 1999, “
The Role of the Mechanical System in Control: A Hypothesis of Self-Stabilization in Hexapedal Runners
.”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
354
, pp.
849
862
.
11.
Cavagna
,
G. A.
,
Heglund
,
N. C.
, and
Taylor
,
C. R.
, 1975, “
Walking, Running, and Galloping: Mechanical Similarities Between Different Animals
,”
Scale Effects in Animal Locomotion, Proceedings of an International Symposium
, T. J. Pedley, Academic, New York, pp.
111
125
.
12.
Raibert
,
M. H.
, 1986,
Legged Robots that Balance
,
MIT
, Cambridge. MA.
13.
DeCarlo
,
R.
,
Branicky
,
M.
,
Pettersson
,
S.
, and
Lennartson
,
B.
, 2000, “
Perspectives and Results on the Stability and Stabilizability of Hybrid Systems
,”
Proc. IEEE
0018-9219,
88
(
7
), pp.
1069
1082
.
14.
Koditschek
,
D. E.
, and
Buehler
,
M.
, 1991, “
Analysis of a Simplified Hopping Robot
,”
Int. J. Robot. Res.
0278-3649,
10
(
6
),
587
605
.
15.
Vakakis
,
A. F.
,
Burdick
,
J. W.
, and
Caughey
,
T. K.
, 1991,“
An Interesting Strange Attractor in the Dynamics of a Hopping Robot
,”
Int. J. Robot. Res.
0278-3649,
10
,
606
618
.
16.
Ringrose
,
R.
, 1997, “
Self-Stabilizing Running
,” Ph.D. thesis, MIT, Cambridge, MA.
17.
Berkemeier
,
M. D.
, and
Desai
,
K. V.
, 1998, “
A Comparison of Three Approaches for the Control of Hopping Height in Legged Robots
,” International Journal of Robotics Research (submitted).
18.
Komsuoglu
,
H.
, and
Koditschek
,
D. E.
, 2000, “
Preliminary Analysis of a Biologically Inspired 1-DOF ‘Clock’ Stabilized Hopper
,”
Proceedings of World Multiconference on Systemics
, Cybernetics and Informatics (SCI2000), Orlando, July 23–26, Vol.
IX
, pp.
670
675
.
19.
Meijer
,
K.
, and
Full
,
R. J.
, 2007, “
Stabilizing Properties of Invertebrate Skeletal Muscle
,” American Zoologist (in press).
20.
Full
,
R. J.
,
Autumn
,
K.
,
Chung
,
J. I.
, and
Ahn
,
A.
, 1998, “
Rapid Negotiation of Rough Terrain by the Death-Head Cockroach
,”
Am. Zool.
0003-1569,
38
, p.
81A
.
21.
Garcia
,
M.
,
Kuo
,
A.
,
Peattie
,
A. M.
,
Wang
,
P. C.
, and
Full
,
R. J.
, 2000, “
Damping and Size: Insights and Biological Inspiration
,” in
Proceedings of the International Symposium on Adaptive Motion of Animals and Machines
, Montreal, Canada.
22.
Sastry
,
S.
, 1999,
Nonlinear Systems: Analysis, Stability and Control
,
Springer
, Berlin.
23.
Mombaur
,
K. D.
, 2001, “
Stability Optimization of Open-Loop Controlled Walking Robots
,” Ph.D. thesis, Universitat Heidelberg, Heidelberg.
24.
Cham
,
J. G
,
Karpick
,
J.
, and
Cutkosky
,
M. R.
, 2004, “
Stride Period Adaptation for a Biomimetic Running Hexapod
,”
Int. J. Robot. Res.
0278-3649,
23
(
2
), pp.
141
154
.
25.
Ogata
,
K.
, 1994,
Discrete-Time Control Systems
,
Prentice-Hall
, Englewood Cliffs, NJ.
26.
Cham
,
J. G.
,
Stafford
,
B.
, and
Cutkosky
,
M. R.
, 2001, “
See Labs Run: A Design-riented Laboratory for Teaching Dynamic Systems
,” ASME, IMECE 2001, Nov. 11–16, New York.
27.
Cham
,
J. G.
, 2002, “
On Performance and Stability in Open-Loop Hopping
,” Ph.D. thesis, Stanford University, Stanford.
28.
Cham
,
J. G.
, and
Cutkosky
,
M. R.
, 2003, “
Adapting Work Through Actuator Phasing in Running
,” 2003 International Symposium Adaptive Motion of Animals and Machines (AMAM2003), Kyoto, Japan.
29.
Abbas
,
J.
, and
Full
,
R. J.
, 2000, “
Neuro-Mechanical Interaction in Cyclic Movements
,”
Biomechanics and Neural Control of Posture and Movement
,
Springer
, Berlin, pp.
177
191
.
You do not currently have access to this content.