This paper mainly proposes distinct criteria for the stability analysis and stabilization of linear uncertain systems with time-varying delays. Based on the Lyapunov theorem, a sufficient condition of the unforced systems with single time-varying delay is first derived. By involving a memoryless state feedback controller, the condition will be extended to treat with the resulting closed-loop system. These explicit criteria can be reformulated in LMIs forms, so we will readily verify the stability or design a stabilizing controller by the current LMI solver. Furthermore, the considered systems with multiple time-varying delays are similarly addressed. Numerical examples are given to demonstrate that the proposed approach is effective and valid.

1.
Hou
,
C.
,
Gao
,
F.
, and
Qian
,
J.
, 2000, “
Improved Delay Time Estimation of RC Ladder Networks
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
47
, pp.
242
246
.
2.
Konishi
,
K.
,
Kokame
,
H.
, and
Hirata
,
K.
, 2000, “
Decentralized Delayed-Feedback Control of a Coupled Ring Map Lattice
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
47
, pp.
1100
1102
.
3.
Lee
,
C. H.
,
Li
,
T. H.
, and
Kung
,
F. C.
, 1995, “
New Results for the Stability of Uncertain Time-Delay Systems
,”
Int. J. Syst. Sci.
0020-7721,
26
, pp.
999
1004
.
4.
Dugard
,
L.
, and
Verriest
,
E.
, 1997,
Stability and Control of Time-Delay Systems
,
Springer
,
New York
.
5.
Kharitonov
,
V. L.
, 1999, “
Robust Stability Analysis of Time Delay Systems: a Survey
,”
Annu. Rev. Control
1367-5788,
23
, pp.
185
196
.
6.
Cheres
,
E.
,
Palmor
,
Z. J.
, and
Gutman
,
S.
, 1989, “
Quantitative Measures of Robustness for Systems Including Delayed Perturbations
,”
IEEE Trans. Autom. Control
0018-9286,
34
, pp.
1203
1204
.
7.
Trinh
,
H.
, and
Aldeen
,
M.
, 1994, “
On the Stability of Linear Systems With Delayed Perturbations
,”
IEEE Trans. Autom. Control
0018-9286,
39
, pp.
1948
1951
.
8.
Wu
,
H.
, and
Mizukami
,
K.
, 1995, “
Robust Stability Criteria for Dynamical Systems Including Delayed Perturbations
,”
IEEE Trans. Autom. Control
0018-9286,
40
, pp.
487
490
.
9.
Kim
,
J. H.
, 1996, “
Robust Stability of Linear Systems With Delayed Perturbations
,”
IEEE Trans. Autom. Control
0018-9286,
41
, pp.
1820
1822
.
10.
Ooba
,
T.
, and
Funahashi
,
Y.
, 1999, “
Comments on ‘Robust Stability of Linear Systems with Delayed Perturbation’
,”
IEEE Trans. Autom. Control
0018-9286,
44
, pp.
1582
1583
.
11.
Ni
,
M. L.
, and
Er
,
M. J.
, 2002, “
Stability of Liner Systems With Delayed Perturbations: an LMI Approach
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
49
(
1
), pp.
108
112
.
12.
Gahinet
,
P.
,
Nemirovski
,
A.
,
Laub
,
A. J.
, and
Chilali
,
M
, 1995,
LMI Control Toolbox
MathWorks
,
Natick MA
.
13.
Hale
,
J.
, 1977,
Theory of Functional Differential Equations
,
Springer-Verlag
,
New York
.
14.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
, 1994,
Linear Matrix Inequalities in Systems and Control Theory
,
SIAM
,
Philadelphia
.
You do not currently have access to this content.