In this paper, the robust guaranteed cost observer-based controls for a class of uncertain time-delay systems are considered. The linear matrix inequality approach is used to design the feedback controls. Optimal guaranteed cost observer-based controls which minimize the upper bound of cost function are provided. A numerical example is given to illustrate our results.

1.
Choi
,
H. H.
, and
Chung
,
M. J.
, 1997, “
Robust Observer-Based H∞ Controller Design for Linear Uncertain Time-Delay Systems
,”
Automatica
0005-1098,
33
, pp.
1749
1752
.
2.
Guan
,
X.
,
Liu
,
Y.
,
Chen
,
C.
, and
Shi
,
P.
, 2003, “
Observer-Based Robust H∞ Control for Uncertain Time-Delay Systems
,”
Aust N. Z. Ind. Appl. Math. J.
1446-1811,
44
, pp.
625
634
.
3.
Mahmoud
,
M. S.
, and
Zribi
,
M.
, 1999, “
Design of Delay Observer-Based Controllers for Uncertain Time-Dag Systems
,”
Math. Prob. Eng.
,
5
, pp.
121
137
.
4.
Sun
,
Y. J.
, 2002, “
Global Stabilizability of Uncertain Systems with Time-Varying Delays via Dynamic Observer-Based Output Feedback
,”
Linear Algebr. Appl.
0024-3795,
353
, pp.
91
105
.
5.
Tan
,
C. P.
, and
Edwards
,
C.
, 1998, “
An LMI Approach for Designing Sliding Mode Observers
,”
Int. J. Control
0020-7179,
74
, pp.
1559
1568
.
6.
Zhang
,
M.
,
Liu
,
Y.
,
Sun
,
Y.
, and
Cheng
,
C.
, 1997, “
An LMI Approach for robust stabilization of observer-based time-delay uncertain dynamic systems
,”
American Control Conference
, Albuquerque, New Mexico, pp.
3652
3656
.
7.
Hale
,
J. K.
, and
Verduyn Lunel
,
S. M.
, 1993,
Introduction to Functional Differential Equations
,
Springer-Verlag
, New York.
8.
Nian
X.
, and
Feng
,
J.
, 2003, “
Guaranteed-Cost Control of a Linear Uncertain System with Multiple Time-Varying Delays: An LMI Approach
,”
IEE Proc.: Control Theory Appl.
1350-2379,
150
, pp.
17
22
.
9.
Park
J. H.
, 2003, “
Robust Guaranteed Cost Control for Uncertain Linear Differential Systems of Neutral Type
,”
Appl. Math. Comput.
0096-3003,
140
, pp.
523
535
.
10.
Crusius
,
C. A. R.
, and
Trofino
,
A.
, 1999, “
Sufficient LMI Conditions for Output Feedback Control Problems
,”
IEEE Trans. Autom. Control
0018-9286,
44
, pp.
1053
-
1057
.
11.
Lien
,
C. H.
, and
Chen
,
J. D.
, 2003, “
Discrete-Delay-Independent and Discrete-Delay-Dependent Criteria for a Class of Neutral Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
, pp.
33
41
.
12.
Lien
,
C. H.
, 2004, “
An Efficient Method to Design Robust Observer-Based Control of Uncertain Linear Systems
,”
Appl. Math. Comput.
0096-3003,
158
, pp.
29
44
.
13.
Boyd
,
S. P.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
, 1994,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
, Philadelphia.
You do not currently have access to this content.