In this paper, the robust guaranteed cost observer-based controls for a class of uncertain time-delay systems are considered. The linear matrix inequality approach is used to design the feedback controls. Optimal guaranteed cost observer-based controls which minimize the upper bound of cost function are provided. A numerical example is given to illustrate our results.
Issue Section:
Technical Briefs
1.
Choi
, H. H.
, and Chung
, M. J.
, 1997, “Robust Observer-Based H∞ Controller Design for Linear Uncertain Time-Delay Systems
,” Automatica
0005-1098, 33
, pp. 1749
–1752
.2.
Guan
, X.
, Liu
, Y.
, Chen
, C.
, and Shi
, P.
, 2003, “Observer-Based Robust H∞ Control for Uncertain Time-Delay Systems
,” Aust N. Z. Ind. Appl. Math. J.
1446-1811, 44
, pp. 625
–634
.3.
Mahmoud
, M. S.
, and Zribi
, M.
, 1999, “Design of Delay Observer-Based Controllers for Uncertain Time-Dag Systems
,” Math. Prob. Eng.
, 5
, pp. 121
–137
.4.
Sun
, Y. J.
, 2002, “Global Stabilizability of Uncertain Systems with Time-Varying Delays via Dynamic Observer-Based Output Feedback
,” Linear Algebr. Appl.
0024-3795, 353
, pp. 91
–105
.5.
Tan
, C. P.
, and Edwards
, C.
, 1998, “An LMI Approach for Designing Sliding Mode Observers
,” Int. J. Control
0020-7179, 74
, pp. 1559
–1568
.6.
Zhang
, M.
, Liu
, Y.
, Sun
, Y.
, and Cheng
, C.
, 1997, “An LMI Approach for robust stabilization of observer-based time-delay uncertain dynamic systems
,” American Control Conference
, Albuquerque, New Mexico, pp. 3652
–3656
.7.
Hale
, J. K.
, and Verduyn Lunel
, S. M.
, 1993, Introduction to Functional Differential Equations
, Springer-Verlag
, New York.8.
Nian
X.
, and Feng
, J.
, 2003, “Guaranteed-Cost Control of a Linear Uncertain System with Multiple Time-Varying Delays: An LMI Approach
,” IEE Proc.: Control Theory Appl.
1350-2379, 150
, pp. 17
–22
.9.
Park
J. H.
, 2003, “Robust Guaranteed Cost Control for Uncertain Linear Differential Systems of Neutral Type
,” Appl. Math. Comput.
0096-3003, 140
, pp. 523
–535
.10.
Crusius
, C. A. R.
, and Trofino
, A.
, 1999, “Sufficient LMI Conditions for Output Feedback Control Problems
,” IEEE Trans. Autom. Control
0018-9286, 44
, pp. 1053
-1057
.11.
Lien
, C. H.
, and Chen
, J. D.
, 2003, “Discrete-Delay-Independent and Discrete-Delay-Dependent Criteria for a Class of Neutral Systems
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 125
, pp. 33
–41
.12.
Lien
, C. H.
, 2004, “An Efficient Method to Design Robust Observer-Based Control of Uncertain Linear Systems
,” Appl. Math. Comput.
0096-3003, 158
, pp. 29
–44
.13.
Boyd
, S. P.
, El Ghaoui
, L.
, Feron
, E.
, and Balakrishnan
, V.
, 1994, Linear Matrix Inequalities in System and Control Theory
, SIAM
, Philadelphia.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.