A new model reduction technique for linear time-invariant systems is proposed. A new method that reduces the order of large-scale systems by integrating singular perturbation with specified frequency domain balanced structure is proposed. Considering a frequency range at which the system actually operates guarantees a good approximation of the original full order model. Simulation experiments for model reduction of several large-scale systems demonstrate the effectiveness of the proposed technique.
1.
Liu
, Y.
, and Anderson
, B. D. O.
, 1989, “Singular Perturbation Approximation of Balanced Systems
,” Int. J. Control
0020-7179, 40
, pp. 1379
–1405
.2.
Aghaee
, P. K.
, Zilouchian
, A.
, Nike-Ravesh
, S.
, and Zadegan
, A.
, 2003, “Principle of Frequency-Domain Balanced Structure in Linear Systems and Model Reduction
,” Comput. Electr. Eng.
0045-7906, 29
, pp. 463
–477
.3.
Moore
, B.
, 1981, “Principle Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,” IEEE Trans. Autom. Control
0018-9286, 20
, pp. 17
–31
.4.
Enns
, D. F.
, 1984, “Model Reduction for Control System Design
,” Ph.D. thesis, Stanford University, San Francisco, CA.5.
Wang
, D.
, and Zilouchian
, A.
, 2000, “Model Reduction of Discrete Linear Systems via Frequency-Domain Balanced Structure
,” IEEE Trans. Circuits Syst.
0098-4094, 47
, pp. 830
–837
.6.
Al-Saggaf
, U. M.
, 1986, “On Model Reduction and Control of Discrete Time Systems
,” Ph.D. thesis, Stanford University, San Francisco, CA.7.
Anderson
, B. D. O.
, and Liu
, Y.
, 1989, “Controller Reduction: Concepts and Approaches
,” IEEE Trans. Autom. Control
0018-9286, 34
, pp. 802
–812
.8.
Amano
, R.
, Horiguchi
, K.
, Nishimura
, T.
, and Nagata
, A.
, 1999, “Frequency-Weighted Model Reduction via Interpolation
,” Electr. Eng. Jpn.
0424-7760, 117
, pp. 1472
–1478
.9.
Leland
, R.
, 1999, “Reduced-Order Models and Controllers for Continuous-Time Stochastic Systems: An Information Theory Approach
,” IEEE Trans. Autom. Control
0018-9286, 44
, pp. 1714
–1719
.10.
Varga
, A.
, 2000, “Balanced Truncation Model Reduction of Periodic Systems
,” Proc. IEEE Int. Symp. Computer Aided Contr. Sys. Design
, Anchorage
, Alaska, pp. 249
–254
.11.
Obinata
, G.
, and Anderson
, B. D. O.
, 2001, Model Reduction for Control System Design
, Springer
, Berlin.12.
Varga
, A.
, and Anderson
, B. D. O.
, 2001, “Accuracy Enhancing Methods for Frequency-Weighted Balancing Related Model Reduction
,” Proc. Conf. Dec. Contr.
, Orlando
, FL, pp. 3659
–3664
.13.
Varga
, A.
, and Anderson
, B. D. O.
, 2002, “Frequency-Weighted Balancing Related Controller Reduction
,” Proc. IFAC Congress
, Barcelona
, Spain.14.
Steel
, J. H.
, “Approximation and Validation of Models with Uncertainty: A Closed-Loop Perspective
,” Ph.D. thesis, University of Cambridge, UK.15.
Jamshidi
, M.
, 1983, Large-Scale Systems: Modeling and Control
, Elsevier
, North-Holland, New York.16.
Kailath
, T.
, 1980, Linear Systems
, Prentice–Hall
, Englewood Cliffs, NJ.17.
Chen
, C. T.
, 1999, Linear System Theory and Design
, Oxford
, New York.18.
Ham
, F. M.
, and Kostanic
, I.
, 2001, Principles of Neurocomputing for Science & Engineering
, McGraw–Hill
, New York.19.
Franklin
, G. F.
, Powell
, J. D.
, and Emami-Naeini
, A.
, 2002, Feedback Control of Dynamic Systems
, Prentice–Hall
, Englewood Cliffs, NJ.20.
Little
, J. N.
, and Laub
, A. J.
, 1995, Control System Toolbox: User’s Guide
, The Mathworks
, Sherborne, MA.21.
Gupta
, N. K.
, 1980, “Frequency-Shaped Cost Functional: Extension of Linear Quadratic Gaussian Design Methods
,” J. Guid. Control
0162-3192, 3
, pp. 529
–535
.22.
Zhou
, K.
, and Doyle
, J.
, 1998, Essentials of Robust Control
, Prentice–Hall
, Englewood Cliffs, NJ.23.
Feldmann
, P.
, and Freund
, R. W.
, 1995, “Efficient Linear Circuit Analysis by Pade Approximation via the Lanczos Process
,” IEEE Trans. Comput.-Aided Des.
0278-0070, 14
, pp. 639
–649
.24.
Prakash
, R.
, and Rao
, S. V.
, 1989, “Model Reduction by Low Frequency Approximation of Internally Balanced Representation
,” IEEE Proc. of the 28th Conf. on Dec. and Contr.
, pp. 2425
–2430
.25.
Sreeram
, V.
, and Agathoklis
, P.
, 1989, “Model Reduction of Linear Discrete Systems via Weighted Impulse Response Gramians
,” IEEE Proc. of the 28th Conf. on Dec. and Contr.
, pp. 2431
–2435
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.