In this paper, the global exponential stability for a class of singular systems with multiple time delays is investigated. Simple stability criterion is derived to guarantee the global exponential stability of such systems. Moreover, an estimate of the convergence rate of such stable systems is presented. A numerical example is also provided to illustrate the main result.

1.
Hale, J. K., 1977, Theory of Functional Differential Equations, Academic Press, New York.
2.
Fite
,
K. B.
,
Speich
,
J. E.
, and
Goldfarb
,
M.
,
2001
, “
Transparency and Stability Robustness in Two-Channel Bilateral Telemanipulation
,”
ASME J. Dyn. Syst., Meas., Control
,
123
, pp.
400
407
.
3.
Fridman
,
E.
,
Fridman
,
L.
, and
Shustin
,
E.
,
2000
, “
Steady Modes in Relay Control Systems With Time Delay and Periodic Disturbances
,”
ASME J. Dyn. Syst., Meas., Control
,
122
, pp.
732
737
.
4.
Olgac
,
N.
, and
Sipahi
,
R.
,
2002
, “
An Exact Method for the Stability Analysis of Time-Delayed Linear Time-Invariant (LTI) Systems
,”
IEEE Trans. Autom. Control
,
47
(
5
), pp.
793
797
.
5.
Park
,
J. H.
,
2002
, “
Robust Nonfragile Decentralized Controller Design for Uncertain Large-Scale Interconnected Systems With Time-Delays
,”
ASME J. Dyn. Syst., Meas., Control
,
124
, pp.
332
336
.
6.
Sun
,
Y. J.
, and
Hsieh
,
J. G.
,
1997
, “
Exponential Tracking Control for a Class of Uncertain Systems With Time-Varying Arguments and Deadzone Nonlinearities
,”
ASME J. Dyn. Syst., Meas., Control
,
119
, pp.
825
830
.
7.
Sun
,
Y. J.
,
Hsieh
,
J. G.
, and
Yang
,
H. C.
,
1997
, “
On the Stability of Uncertain Systems With Multiple Time-Varying Delays
,”
IEEE Trans. Autom. Control
,
42
(
1
), pp.
101
105
.
8.
Sun
,
Y. J.
, and
Hsieh
,
J. G.
,
1998
, “
On α-Stability Criteria of Nonlinear Systems With Multiple Time-Delays
,”
J. Franklin Inst.
,
335B
(
4
), pp.
695
705
.
9.
Yan
,
J. J.
,
Tsai
,
J. S. H.
, and
Sheen
,
I. E.
,
2001
, “
Stability Analysis of Large-Scale Time-Delay Systems via Evolutionary Programming Algorithm
,”
ASME J. Dyn. Syst., Meas., Control
,
123
, pp.
293
296
.
10.
Dai, L., 1989, Singular Control Systems: Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin.
11.
Li
,
Y.
, and
Liu
,
Y.
,
1999
, “
Bifurcation on Stability of Singular Systems With Delay
,”
Int. J. Syst. Sci.
,
30
(
6
), pp.
643
649
.
12.
Lin
,
C. L.
,
1999
, “
On the Stability of Uncertain Linear Descriptor Systems
,”
J. Franklin Inst.
,
336B
(
3
), pp.
549
564
.
13.
Pan
,
S. T.
,
Chen
,
C. F.
, and
Hsieh
,
J. G.
, 2002, “D-Stability for A Class of Discrete Descriptor Systems with Multiple Time Delays,” Control and Cybernetics, 31, pp. 79–89.
14.
Su
,
T. J.
, and
Shyr
,
W. J.
,
1994
, “
Robust D-Stability for Linear Uncertain Discrete-Delay Systems
,”
IEEE Trans. Autom. Control
,
39
, pp.
425
428
.
15.
Wang, R., and Liu, Y., 2000, “Asymptotic Stability and Robustness for Discrete-Time Singular Systems With Multiple Time-Delays,” Proc. of 3rd World Congress on Intelligent Control and Automation, Hefei, pp. 3350–3353.
16.
Wang, R., and Liu, Y., 2000, “Conditions for D-Stability of Discrete Singular Systems With Time-Delays,” Proc. of 3rd World Congress on Intelligent Control and Automation, Hefei, pp. 2824–2828.
17.
Xu
,
S.
,
Lam
,
J.
, and
Zhang
,
L.
,
2002
, “
Robust D-Stability Analysis for Uncertain Discrete Singular Systems With State Delay
,”
IEEE Trans. Autom. Control
,
49
(
4
), pp.
551
555
.
18.
Bronson, R., 1989, Matrix Operations: Schaum’s Outline Series, McGraw-Hill, New York.
19.
Buchanan, J. L., and Turner, P. R., 1992, Numerical Methods and Analysis, McGraw-Hill, New York.
You do not currently have access to this content.