In this paper, the global exponential stability for a class of singular systems with multiple time delays is investigated. Simple stability criterion is derived to guarantee the global exponential stability of such systems. Moreover, an estimate of the convergence rate of such stable systems is presented. A numerical example is also provided to illustrate the main result.
Issue Section:
Technical Briefs
1.
Hale, J. K., 1977, Theory of Functional Differential Equations, Academic Press, New York.
2.
Fite
, K. B.
, Speich
, J. E.
, and Goldfarb
, M.
, 2001
, “Transparency and Stability Robustness in Two-Channel Bilateral Telemanipulation
,” ASME J. Dyn. Syst., Meas., Control
, 123
, pp. 400
–407
.3.
Fridman
, E.
, Fridman
, L.
, and Shustin
, E.
, 2000
, “Steady Modes in Relay Control Systems With Time Delay and Periodic Disturbances
,” ASME J. Dyn. Syst., Meas., Control
, 122
, pp. 732
–737
.4.
Olgac
, N.
, and Sipahi
, R.
, 2002
, “An Exact Method for the Stability Analysis of Time-Delayed Linear Time-Invariant (LTI) Systems
,” IEEE Trans. Autom. Control
, 47
(5
), pp. 793
–797
.5.
Park
, J. H.
, 2002
, “Robust Nonfragile Decentralized Controller Design for Uncertain Large-Scale Interconnected Systems With Time-Delays
,” ASME J. Dyn. Syst., Meas., Control
, 124
, pp. 332
–336
.6.
Sun
, Y. J.
, and Hsieh
, J. G.
, 1997
, “Exponential Tracking Control for a Class of Uncertain Systems With Time-Varying Arguments and Deadzone Nonlinearities
,” ASME J. Dyn. Syst., Meas., Control
, 119
, pp. 825
–830
.7.
Sun
, Y. J.
, Hsieh
, J. G.
, and Yang
, H. C.
, 1997
, “On the Stability of Uncertain Systems With Multiple Time-Varying Delays
,” IEEE Trans. Autom. Control
, 42
(1
), pp. 101
–105
.8.
Sun
, Y. J.
, and Hsieh
, J. G.
, 1998
, “On α-Stability Criteria of Nonlinear Systems With Multiple Time-Delays
,” J. Franklin Inst.
, 335B
(4
), pp. 695
–705
.9.
Yan
, J. J.
, Tsai
, J. S. H.
, and Sheen
, I. E.
, 2001
, “Stability Analysis of Large-Scale Time-Delay Systems via Evolutionary Programming Algorithm
,” ASME J. Dyn. Syst., Meas., Control
, 123
, pp. 293
–296
.10.
Dai, L., 1989, Singular Control Systems: Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin.
11.
Li
, Y.
, and Liu
, Y.
, 1999
, “Bifurcation on Stability of Singular Systems With Delay
,” Int. J. Syst. Sci.
, 30
(6
), pp. 643
–649
.12.
Lin
, C. L.
, 1999
, “On the Stability of Uncertain Linear Descriptor Systems
,” J. Franklin Inst.
, 336B
(3
), pp. 549
–564
.13.
Pan
, S. T.
, Chen
, C. F.
, and Hsieh
, J. G.
, 2002, “D-Stability for A Class of Discrete Descriptor Systems with Multiple Time Delays,” Control and Cybernetics, 31, pp. 79–89.14.
Su
, T. J.
, and Shyr
, W. J.
, 1994
, “Robust D-Stability for Linear Uncertain Discrete-Delay Systems
,” IEEE Trans. Autom. Control
, 39
, pp. 425
–428
.15.
Wang, R., and Liu, Y., 2000, “Asymptotic Stability and Robustness for Discrete-Time Singular Systems With Multiple Time-Delays,” Proc. of 3rd World Congress on Intelligent Control and Automation, Hefei, pp. 3350–3353.
16.
Wang, R., and Liu, Y., 2000, “Conditions for D-Stability of Discrete Singular Systems With Time-Delays,” Proc. of 3rd World Congress on Intelligent Control and Automation, Hefei, pp. 2824–2828.
17.
Xu
, S.
, Lam
, J.
, and Zhang
, L.
, 2002
, “Robust D-Stability Analysis for Uncertain Discrete Singular Systems With State Delay
,” IEEE Trans. Autom. Control
, 49
(4
), pp. 551
–555
.18.
Bronson, R., 1989, Matrix Operations: Schaum’s Outline Series, McGraw-Hill, New York.
19.
Buchanan, J. L., and Turner, P. R., 1992, Numerical Methods and Analysis, McGraw-Hill, New York.
Copyright © 2003
by ASME
You do not currently have access to this content.