In this paper, the robust stability problem for a class of nominally stable uncertain discrete singularly perturbed linear systems with multiple time delays is considered. A stability criterion for the slow and fast subsystems is first derived. A delay-dependent criterion is then proposed to guarantee the robust stability of the system subject to norm-bounded perturbations. A numerical example is provided to illustrate our main results.

1.
Gorecki, H., Fuksa, S., Grabowski, P., and Korytowski, A. 1989, Analysis and Synthesis of Time Delay Systems, Wiley, Chichester.
2.
Trinh
,
H.
, and
Aldeen
,
M.
,
1995
, “
Robust Stability of Singularly Perturbed Discrete-Delay Systems
,”
IEEE Trans. Autom. Control
,
AC-40
, pp.
1620
1623
.
3.
Stepan, G., 1989, Retarded Dynamical Systems, Longman, London.
4.
Stepan, G., Enikov, E., and Muller, T., 1996–1997, “Nonlinear Dynamics of Computer Controlled Machines,” Proceedings of 11th CISM-IFTOMM Symposium on Theory and Practice of Robots and Manipulators, Udine, 1996, Morecki, A., Bianchi, G. eds., Springer, Berlin, 1997, pp. 81–88.
5.
Olgac
,
N.
, and
Elmali
,
H.
,
2000
, “
Analysis and Design of Delayed Resonator in Discrete Domain
,”
J. Vib. Control
,
6
, pp.
273
289
.
6.
Kokotovic, P. V., Khalil, H. K., and O’Reilly, J., 1986, Singular Perturbation Methods in Control: Analysis and Design, Academic Press, New York.
7.
Khalil
,
H. K.
,
1989
, “
Feedback Control of Nonstandard Singularly Perturbed Systems
,”
IEEE Trans. Autom. Control
,
AC-34
, pp.
1052
1060
.
8.
Hsiao
,
F. H.
, and
Hwang
,
J. D.
,
1996
, “
Stabilization of Nonlinear Singularly Perturbed Multiple Time-Delay Systems by Dither
,”
ASME J. Dyn. Syst., Meas., Control
,
18
, pp.
176
181
.
9.
Shi
,
P.
,
Shue
,
S. P.
, and
Agarwal
,
R. K.
,
1998
, “
Robust Disturbance Attenuation with Stability for a Class of Uncertain Singularly Perturbed Systems
,”
Int. J. Control
,
70
, pp.
873
891
.
10.
Li
,
T. H. S.
, and
Li
,
J. H.
,
1992
, “
Stabilization Bound of Discrete Two-Time-Scale Systems
,”
Syst. Control Lett.
,
18
, pp.
479
489
.
11.
Hsiao
,
F. H.
,
Pan
,
S. T.
, and
Teng
,
C. C.
,
1999
, “
An Efficient Algorithm for Finding the D-Stability Bound of Discrete Singularly Perturbed Systems with Multiple Time Delays
,”
Int. J. Control
,
72
, pp.
1
17
.
12.
Phoojaruenchanachai
,
S.
,
Uahchinkul
,
K.
, and
Prempraneerach
,
Y.
,
1998
, “
Robust Stabilization of a State Delayed System
,”
IEE Proc.-D:Control Theory Appl.
145
, pp.
87
91
.
13.
Lien
,
C. H.
,
Hsieh
,
J. G.
, and
Sun
,
Y. J.
,
1998
, “
Robust Stabilization for a Class of Uncertain Systems with Multiple Time Delays via Linear Control
,”
J. Math. Anal. Appl.
,
218
, pp.
369
378
.
14.
Wu
,
H. S.
, and
Mizukami
,
K.
,
1994
, “
Robust Stabilization of Uncertain Linear Dynamical Systems with Time-Varying Delay
,”
J. Optim. Theory Appl.
,
82
, pp.
593
606
.
15.
Naidu, D. S., and Rao, A. K., 1985, Singular Perturbation Analysis of Discrete Control Systems, Springer-Verlag, Berlin.
16.
Hsiao
,
F. H.
,
Pan
,
S. T.
, and
Teng
,
C. C.
,
1997
, “
D-Stability Bound Analysis for Discrete Multiparameter Singularly Perturbed Systems
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
44
, pp.
347
351
.
17.
Mahmoud
,
M. S.
,
1982
, “
Order Reduction and Control of Discrete Systems
,”
IEE Proc.-D: Control Theory Appl.
129
, pp.
129
135
.
18.
Hsia, T. C., 1977, System Identification, Lexington, New York.
19.
Vidyasagar, M., 1985, Control System Synthesis, MIT Press, Cambridge.
You do not currently have access to this content.