The problem of scheduling strictly positive real (SPR) dynamic compensation for control of nonlinear flexible systems which exhibit collocated inputs and outputs is explored. The major application is the robust motion control of structurally flexible systems whose dynamics possess significant configuration dependence. Included in this class are flexible robot manipulators. The issue of designing a linear time-invariant SPR compensator for control of a nonlinear system is examined Controller performance is enhanced by scheduling a series of such designs and a scheduling algorithm is developed which preserves robust stability with respect to the nonlinear plant model Global asymptotic stability of equilibrium setpoints is proven when the scheduled SPR compensator is used in conjunction with a proportional feedback gain. A numerical example employing a two-link flexible manipulator is used to illustrate the approach and compare the efficacy of different scheduling algorithms.

1.
Anderson
B. D. O.
,
1967
A System Theory Criterion for Positive Real Matrices
,”
SIAM J. Control
, Vol.
5
, No.
2
, pp.
171
182
.
2.
Benhabib
R. J.
,
Iwens
R. P.
, and
Jackson
R. L.
,
1981
Stability of Large Space Structure Control Systems Using Positivity Concepts
,”
AIAA J. Guidance and Control
, Vol.
4
, No.
5
, pp.
487
494
.
3.
Damaren
C. J.
,
1995
Passivity Analysis for Flexible Multilink Space Manipulators
,”
AIAA J. Guidance, Control, and Dynamics
, Vol.
18
, No.
2
, pp.
272
279
.
4.
Damaren
C. J.
,
1996
Approximate Inverse Dynamics and Passive Feedback for Flexible Manipulators Carrying Large Payloads
,”
IEEE Trans. Robotics and Automation
, Vol.
12
, No.
1
, pp.
131
138
.
5.
Damaren
C. J.
, and
Sharf
I.
,
1995
Simulation of Flexible-Link Manipulators with Inertial and Geometric Nonlinearities
,”
ASME JOURNAL DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
117
, No.
1
, pp.
74
87
.
6.
De Luca
A.
, and
Siciliano
B.
,
1993
Inversion-Based Nonlinear Control of Robot Arms with Flexible Links
,”
AIAA J. Guidance, Control, and Dynamics
, Vol.
16
, No.
6
, pp.
1169
1176
.
7.
Desoer, C. A., and Vidyasagar, M., 1975. Feedback Systems: Input-Output Properties, Academic Press, New York.
8.
Haddad
W. M.
,
Bernstein
D. S.
, and
Wang
Y. W.
,
1994
Dissipative H2/H Controller Synthesis
,”
IEEE Trans. Automatic Control
, Vol.
39
, No.
4
, pp.
827
831
.
9.
Hill
D. J.
&
Moylan
P. J.
,
1977
Stability Results for Nonlinear Feedback Systems
,”
Automatica
, Vol.
13
, pp.
377
382
.
10.
Hughes, P. C. 1986 Spacecraft Attitude Dynamics, John Wiley, Toronto.
11.
Hughes
P. C.
, and
Sincarsin
G. B.
,
1990
Dynamics of Elastic Multibody Chains: Part B—Global Dynamics
,”
Dynamics and Stability of Systems
, Vol.
4
, Nos.
3 and 4
, pp.
227
243
.
12.
Lanari
L.
, and
Wen
J. T.
,
1992
Asymptotically Stable Set Point Control Laws for Flexible Robots
,”
Systems & Control Letters
, Vol.
19
, pp.
119
129
.
13.
Lozano-Leal
R.
, and
Joshi
S. M.
,
1988
On the Design of Dissipative LQG-Type Controllers
,”
Proc. 27th IEEE Decision and Control Conference
, Vol.
2
, pp.
1645
1646
.
14.
McLaren
M. D.
, and
Slater
G. L.
,
1987
Robust Multivariable Control of Large Space Structures Using Positivity
,”
AIAA J. Guidance, Control, and Dynamics
, Vol.
10
, No.
4
, pp.
393
400
.
15.
Marquez
H. J.
, and
Damaren
C. J.
,
1995
Comments on Strictly Positive Real Transfer Functions Revisited
,”
IEEE Trans. on Automatic Control
, Vol.
40
, No.
3
, pp.
478
479
.
16.
Meressi
T.
, and
Paden
B.
,
1994
Gain Scheduled H., Controllers for a Two Link Flexible Manipulator
,”
AIAA J Guidance, Control, and Dynamics
, Vol.
17
, No.
3
, pp.
537
543
.
17.
Paden
B.
,
Chen
D.
,
Ledesma
R.
, and
Bayo
E.
,
1993
Exponentially Stable Tracking Control for Multijoint Flexible-Link Manipulators
,”
ASME JOURNAL DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
115
, No.
1
, pp.
53
59
.
18.
Paden, B., and Riedle, B., 1988 “A Positive-Real Modification of a Class of Nonlinear Controllers for Robot Manipulators,” Proc 1988 American Control Conference, Atlanta, GA, pp. 1782–1785.
19.
Paden, B., Riedle, B., and Bayo, E., 1990 “Exponentially Stable Tracking Control for Multi-Joint Flexible-Link Manipulators,” Proc 1990 American Control Conference, San Diego, CA, pp. 680–684.
20.
Shamma
J. S.
, and
Athans
M.
,
1990
Analysis of Gain Scheduled Control for Nonlinear Plants
,”
IEEE Trans. Automatic Control
, Vol.
35
, No.
8
, pp.
898
907
.
21.
Sincarsin
G. B.
, and
Hughes
P. C.
,
1990
Dynamics of Elastic Multibody Chains: Part A-Body Motion Equations
,”
Dynamics and Stability of Systems
, Vol.
4
, Nos
3 and 4
, pp.
537
543
.
22.
Takegaki
M.
, and
Arimoto
S.
,
1981
A New Feedback Method for Dynamic Control of Manipulators
,”
ASME JOURNAL DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
103
, pp.
119
125
.
23.
Tao
G.
, and
Ioannou
P. A.
,
1988
Strictly Positive Real Matrices and the Lefschetz-Kalman-Yakubovich Lemma
,”
IEEE Trans Automatic Control
, Vol.
33
, No.
12
, pp.
1183
1185
.
24.
Vidyasagar, M., 1993 Nonlinear Systems Analysis, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ.
25.
Wang
D.
, and
Vidyasagar
M.
,
1992
Passive Control of a Stiff Flexible Link
,”
Int J of Robotics Research
, Vol.
11
, No.
6
, pp.
572
578
.
26.
Wen
J. T.
,
1988
Time Domain and Frequency Domain Conditions for Strict Positive Realness
,”
IEEE Trans Automatic Control
, Vol.
33
, No.
10
, pp.
988
992
.
27.
Wen
J. T.
, and
Bayard
D. S.
,
1988
New Class of Control Laws for Robotic Manipulators Part I Non-adaptive Case
,”
Int J, Control
, Vol.
47
, No.
5
, pp.
1361
1385
.
This content is only available via PDF.
You do not currently have access to this content.