Abstract

We consider the problem of representing and manipulating nonmanifold objects of any dimension and at multiple resolutions. We present a modeling scheme based on (1) a multiresolution representation, called the vertex-based nonmanifold multitessellation, (2) a compact and dimension-independent data structure, called the Simplified Incidence Graph (SIG), and (3) an atomic mesh update operator, called vertex-pair contraction/vertex expansion. We propose efficient algorithms for performing the vertex-pair contraction on a simplicial mesh encoded as a SIG, and an effective representation for encoding this multiresolution model based on a compact encoding of vertex-pair contractions and vertex expansions.

References

1.
Cutler
,
B.
,
Dorsey
,
J.
, and
McMillan
,
L.
, 2004, “
Simplification and Improvement of Tetrahedral Models for Simulation
,”
Proc. ACM/Eurographics Symposium on Geometry Processing
, Nice, France,
ACM
,
New York
.
2.
Véron
,
P.
, and
Léon
,
J.-C.
, 2001, “
Using Polyhedral Models to Automatically Sketch Idealized Geometry for Structural Analysis
,”
Eng. Comput.
0177-0667,
17
, pp.
373
385
.
3.
El-Sana
,
J.
, and
Varshney
,
A.
, 1999, “
Generalized View-Dependent Simplification
,”
Comput. Graph. Forum
0167-7055,
18
(
3
), pp.
C83
C94
.
4.
De Floriani
,
L.
,
Greenfieldboyce
,
D.
, and
Hui
,
A.
, 2004, “
A Data Structure for Non-Manifold Simplicial d-Complexes
,”
Proc. ACM/Eurographics Symposium on Geometry Processing
,
L.
Kobbelt
et al.
, eds, Nice, France,
ACM
,
New York
.
5.
Edelsbrunner
,
H.
, 1987,
Algorithms in Combinatorial Geometry
,
Springer-Verlag
, Berlin.
6.
Gursoz
,
E. L.
,
Choi
,
Y.
, and
Prinz
,
F. B.
, 1990, “
Vertex-Based Representation of Non-Manifold Boundaries
,”
Geometric Modeling for Product Engineering
,
M. J.
Wozny
et al.
, eds,
Elsevier Science
, North-Holland, Amsterdam, pp.
107
130
.
7.
Lee
,
S. H.
, and
Lee
,
K.
, 2001, “
Partial-Entity Structure: A Fast and Compact Non-Manifold Boundary Representation Based on Partial Topological Entities
,”
Proc. 6th ACM Symposium on Solid Modeling and Applications
, Ann Arbor, Michigan,
ACM
, pp.
159
170
.
8.
Weiler
,
K.
, 1988, “
The Radial-Edge Data Structure: A Topological Representation for Non-Manifold Geometric Boundary Modeling
,”
Geometric Modeling for CAD Applications
,
J. L.
Encarnacao
et al.
, eds,
Elsevier Science
, North-Holland, Amsterdam, pp.
3
36
.
9.
De Floriani
,
L.
, and
Hui
,
A.
, 2005, “
Data Structures for Simplicial Complexes: An Analysis and a Comparison
,” Third Eurographics Symposium on Geometry Processing,
M.
Desbrun
and
H.
Pottmann
, eds, Vienna, Austria, pp.
119
128
.
10.
Desaulnier
,
H.
, and
Stewart
,
N.
, 1992, “
An Extension of Manifold Boundary Representation to R-sets
,”
ACM Trans. Graphics
0730-0301,
11
(
1
), pp.
40
60
.
11.
Rossignac
,
J.
, and
Cardoze
,
D.
, 1999, “
Matchmaker: Manifold BReps for Non-Manifold R-Sets
,”
Proc. 5th Symposium on Solid Modeling and Applications
,
W. F.
Bronsvoort
and
D. C.
Anderson
, eds,
ACM
,
New York
, pp.
31
41
.
12.
De Floriani
,
L.
,
Mesmoudi
,
M.
,
Morando
,
F.
, and
Puppo
,
E.
, 2003, “
Non-Manifold Decompositions in Arbitrary Dimensions
,”
CVGIP: Graph. Models Image Process.
1049-9652,
65
(
1/3
), pp.
2
22
.
13.
Garland
,
M.
, 1999, “
Multi-Resolution Modeling: Survey and Future Opportunities
,” Eurographics—State of the Art Reports, Eurographics Association, pp.
111
131
.
14.
Cignoni
,
P.
,
Costanza
,
D.
,
Montani
,
C.
,
Rocchini
,
C.
, and
Scopigno
,
R.
, 2000, “
Simplification of Tetrahedral Volume Data With Accurate Error Evaluation
,”
Proc. IEEE Visualization 2000
,
IEEE Computer Society
,
Los Alamitos
, pp.
85
92
.
15.
Gross
,
M. H.
, and
Staadt
,
O. G.
, 1998, “
Progressive Tetrahedralizations
,” Proc. IEEE Visualization, IEEE Computer Society, Research Triangle Park, NC, pp.
397
402
.
16.
Dey
,
T.
,
Edelsbrunner
,
H.
,
Guha
,
S.
, and
Nekhayev
,
D.
, 1999, “
Topology Preserving Edge Contraction
,” Publications de l’Institut Mathematique (Beograd),
60
(
80
), pp.
23
45
.
17.
Popovic
,
J.
, and
Hoppe
,
H.
, 1997, “
Progressive Simplicial Complexes
,”
ACM Computer Graphics Proc. Annual Conference Series (SIGGRAPH)
,
ACM
,
New York
, pp.
217
224
.
18.
De Floriani
,
L.
,
Puppo
,
E.
, and
Magillo
,
P.
, 1997, “
A Formal Approach to Multi-Resolution Modeling
,”
Geometric Modeling: Theory and Practice
,
W.
Strasser
et al.
, eds,
Springer-Verlag
, New York, pp.
302
323
.
19.
Luebke
,
D.
, and
Erikson
,
C.
, 1997, “
View-Dependent Simplification of Arbitrary Polygonal Environments
,”
ACM Computer Graphics Proc., Annual Conference Series (SIGGRAPH)
,
ACM
,
New York
, pp.
199
208
.
20.
Cera
,
C. D.
,
Braude
,
I.
,
Kim
,
T.
,
Han
,
J.
, and
Regli
,
W.
, 2006, “
Hierarchical Role-Based Viewing for Multi-Level Information Security in Collaborative CAD
,”
J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
1
), pp.
2
10
.
21.
Lee
,
S. H.
, 2005, “
A CAD-CAE Integration Approach Using Feature-Based Multi-Resolution and Multi-Abstraction Modelling Techniques
,”
Comput.-Aided Des.
0010-4485,
37
(
9
), pp.
941
955
.
22.
Lee
,
S. H.
, 2005, “
Feature-Based Multiresolution Modeling of Solids
,”
ACM Trans. Graphics
0730-0301,
24
(
4
), pp.
1417
1441
.
23.
De Floriani
,
L.
,
Magillo
,
P.
,
Puppo
,
E.
, and
Sobrero
,
D.
, 2004, “
A Multi-Resolution Topological Representation for Non-Manifold Meshes
,”
Comput.-Aided Des.
0010-4485,
36
(
2
), pp.
141
159
.
24.
De Floriani
,
L.
, and
Hui
,
A.
, 2003, “
A Scalable Data Structure for Three-Dimensional Non-manifold Objects
,”
Proc. ACM/Eurographics Symposium on Geometry Processing
,
L.
Kobbelt
et al.
, eds,
Aachen
, Germany, pp.
73
83
.
You do not currently have access to this content.