Abstract

To support intelligent computer-aided design (CAD), we introduce a machine learning architecture, namely HG-CAD, that recommends assembly body material through joint learning of body- and assembly-level features using a hierarchical graph representation. Specifically, we formulate the material prediction and recommendation process as a node-level classification task over a novel hierarchical graph representation of CAD models, with a low-level graph capturing the body geometry, a high-level graph representing the assembly topology, and a batch-level mask randomization enabling contextual awareness. This enables our network to aggregate geometric and topological features from both the body and assembly levels, leading to competitive performance. Qualitative and quantitative evaluation of the proposed architecture on the Fusion 360 Gallery Assembly Dataset demonstrates the feasibility of our approach, outperforming selected computer vision and human baselines while showing promise in application scenarios. The proposed HG-CAD architecture that unifies the processing, encoding, and joint learning of multi-modal CAD features indicates the potential to serve as a recommendation system for design automation and a baseline for future work.

References

1.
Mouritz
,
A.P.
,
2012
,
Introduction to Aerospace Materials
,
Woodhead Publishing
,
Cambridge, UK
.
2.
Arnold
,
S. M.
,
Cebon
,
D.
, and
Ashby
,
M.
,
2012
,
Materials Selection for Aerospace Systems
,
National Aeronautics and Space Administration Glenn Research Center
,
Hanover, MD
.
3.
Miller
,
B.A.
,
Shipley
,
R.J.
,
Parrington
,
R.J.
, and
Dennies
,
D.P.
,
2021
,
Failure Analysis and Prevention
, Vol.
11
,
ASM International
,
Materials Park, OH
, pp.
60
79
.
4.
Sargent
,
P.
,
1991
,
Materials Information for CAD/CAM
,
Butterworth-Heinemann
,
Oxford, UK
.
5.
Willis
,
K.D.D.
,
Pu
,
Y.
,
Luo
,
J.
,
Chu
,
H.
,
Du
,
T.
,
Lambourne
,
J.G.
,
Solar-Lezama
,
A.
, and
Matusik
,
W.
,
2021
, “
Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD Construction From Human Design Sequences
,”
ACM Trans. Graph.
,
40
(
4
), pp.
54
78
.
6.
Koch
,
S.
,
Matveev
,
A.
,
Jiang
,
Z.
,
Williams
,
F.
,
Artemov
,
A.
,
Burnaev
,
E.
,
Alexa
,
M.
,
Zorin
,
D.
, and
Panozzo
,
D.
,
2018
, “
ABC: A Big CAD Model Dataset for Geometric Deep Learning
,”
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Salt Lake City, UT
,
June 18–23
.
7.
Kim
,
S.
,
Chi
,
H.-g.
,
Hu
,
X.
,
Huang
,
Q.
, and
Ramani
,
K.
,
2020
, “
A Large-Scale Annotated Mechanical Components Benchmark for Classification and Retrieval Tasks With Deep Neural Networks
,”
Proceedings of 16th European Conference on Computer Vision (ECCV)
,
Glasgow, UK
,
Aug. 23–28
.
8.
Sarica
,
S.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2020
, “
TechNet: Technology Semantic Network Based on Patent Data
,”
Expert Syst. Appl.
,
142
, p.
112995
.
9.
Willis
,
K. D. D.
,
Jayaraman
,
P. K.
,
Chu
,
H.
,
Tian
,
Y.
,
Li
,
Y.
,
Grandi
,
D.
,
Sanghi
,
A.
, et al
,
2021
, “
JoinABLe: Learning Bottom-up Assembly of Parametric CAD Joints
,”
2021 Conference on Computer Vision and Pattern Recognition
,
Nashville, TN
,
June 19–25
.
10.
Jones
,
B.
,
Hildreth
,
D.
,
Chen
,
D.
,
Baran
,
I.
,
Kim
,
V.
, and
Schulz
,
A.
,
2021
, “
Sb-gcn: Structured BREP Graph Convolutional Network for Automatic Mating of CAD Assemblies
,”
CoRR
, pp.
1
16
.
11.
Lambourne
,
J.G.
,
Willis
,
K.D.
,
Jayaraman
,
P K.
,
Sanghi
,
A.
,
Meltzer
,
P.
, and
Shayani
,
H.
,
2021
, “
BRepNet: A Topological Message Passing System for Solid Models
,”
Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Nashville, TN
,
June 20–25
, pp.
12773
2782
.
12.
Jayaraman
,
P. K.
,
Sanghi
,
A.
,
Lambourne
,
J.
,
Davies
,
T.
,
Shayani
,
H.
, and
Morris
,
N.
,
2020
, “
Uv-net: Learning From Curve-Networks and Solids
,”
IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR)
,
Virtual
,
June 19–25
.
13.
Han
,
J.
,
Forbes
,
H.
,
Shi
,
F.
,
Hao
,
J.
, and
Schaefer
,
D.
,
2020
, “
A Data-Driven Approach for Creative Concept Generation and Evaluation
,”
Proceedings of the Design Society: DESIGN Conference
,
Cavtat, Croatia
,
Oct. 26–29
, Vol. 1, Cambridge University Press, pp.
167
176
.
14.
Sarica
,
S.
,
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2021
, “
Idea Generation With Technology Semantic Network
,”
AI EDAM
,
35
(
3
), pp.
265
283
.
15.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2021
, “
Guiding Data-Driven Design Ideation by Knowledge Distance
,”
Knowledge Based Syst.
,
218
, p.
106873
.
16.
Ashby
,
M. F.
,
1989
, “
Materials Selection in Conceptual Design
,”
Mater. Sci. Technol.
,
5
(
6
), pp.
517
525
.
17.
Ullah
,
N.
,
Riaz
,
A. A.
, and
Shah
,
S. A.
,
2020
, “
Investigation on Material Selection for the Columns of Universal Testing Machine (UTM) Using Granta’s Design CES Edupack
,”
Tech. J.
,
25
(
2
), pp.
52
60
.
18.
Albiñana
,
J.
, and
Vila
,
C.
,
2012
, “
A Framework for Concurrent Material and Process Selection During Conceptual Product Design Stages
,”
Mater. Des.
,
41
, pp.
433
446
.
19.
van Kesteren
,
I.E.H.
,
Stappers
,
P.J.
, and
de Bruijn
,
J.C.M.
,
2007
, “
Materials, User-Product Interaction and Other Decisions
,”
Int. J. Des.
,
1
(
3
), pp.
41
55
.
20.
Zarandi
,
M. H. F.
,
Mansour
,
S.
,
Hosseinijou
,
S. A.
, and
Avazbeigi
,
M.
,
2011
, “
A Material Selection Methodology and Expert System for Sustainable Product Design
,”
Int. J. Adv. Manuf. Technol.
,
57
(
9–12
), pp.
885
903
.
21.
Bi
,
L.
,
Zuo
,
Y.
,
Tao
,
F.
,
Liao
,
T. W.
, and
Liu
,
Z.
,
2017
, “
Energy-Aware Material Selection for Product With Multicomponent Under Cloud Environment
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031007
.
22.
Abdullah
,
T. A.
,
Popplewell
,
K.
, and
Page
,
C. J.
,
2003
, “
A Review of the Support Tools for the Process of Assembly Method Selection and Assembly Planning
,”
Int. J. Prod. Res.
,
41
(
11
), pp.
2391
2410
.
23.
Odum
,
K.
,
Soshi
,
M.
, and
Yamazaki
,
K.
,
2022
, “
Numerical Study of Material Selection for Optimal Directed Energy Deposition Single Nozzle Powder Efficiency
,”
ASME J. Manuf. Sci. Eng.
,
144
(
12
), p.
121006
.
24.
Sirisalee
,
P.
,
Parks
,
G.T.
,
Ashby
,
M.F.
, and
Clarkson
,
P.J.
,
2004
, “
Multi-Material Selection: Material Selection for Sandwich Beams
,”
ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, Vol. 46962, pp.
31
40
.
25.
Somkuwar
,
A.
,
Khaira
,
H.
, and
Somkuwar
,
V.
,
2010
, “
Materials Selection for Product Design Using Artificial Neural Network Technique
,”
J. Eng. Sci. Manag. Educ.
,
3
(
2
), pp.
51
54
.
26.
Chandrasekhar
,
A.
,
Sridhara
,
S.
, and
Suresh
,
K.
,
2022
, “
Integrating Material Selection with Design Optimization Via Neural Networks
,”
Eng. Comput.
,
38
, pp.
4715
4730
.
27.
Keiser
,
J.R.
,
He
,
X.
,
Sulejmanovic
,
D.
,
Qu
,
J.N.
,
Robb
,
K.R.
, and
Oldinski
,
K.
,
2023
, “
Material Selection and Corrosion Studies of Candidate Bearing Materials for Use in Molten Chloride Salts
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021001
.
28.
Eddy
,
D.
,
Krishnamurty
,
S.
,
Grosse
,
I.R.
, and
Wileden
,
J.
,
2014
, “
A Robust Surrogate Modeling Approach for Material Selection in Sustainable Design of Products
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, p. V01AT02A091.
29.
Dehghan-Manshadi
,
B.
,
Mahmudi
,
H.
,
Abedian
,
A.
, and
Mahmudi
,
R.
,
2007
, “
A Novel Method for Materials Selection in Mechanical Design: Combination of Non-linear Normalization and a Modified Digital Logic Method
,”
Mater. Des.
,
28
(
1
), pp.
8
15
.
30.
Mamoon
,
A.
,
Alhaji
,
A. U.
, and
Abdullahi
,
I.
,
2021
, “
Application of Neural Network for Material Selection: A Review
,”
Int. J. Mater. Sci. Eng.
,
7
(
2
), pp.
1
16
.
31.
Zhou
,
C.-C.
,
Yin
,
G.-F.
, and
Hu
,
X.-B.
,
2009
, “
Multi-Objective Optimization of Material Selection for Sustainable Products: Artificial Neural Networks and Genetic Algorithm Approach
,”
Mater. Des.
,
30
(
4
), pp.
1209
1215
.
32.
Bian
,
S.
,
Lin
,
T.
,
Li
,
C.
,
Fu
,
Y.
,
Jiang
,
M.
,
Wu
,
T.
,
Hang
,
X.
, and
Li
,
B.
,
2021
, “
Real-time Object Detection for Smart Connected Worker in 3D printing
,”
2021 International Conference on Computational Science (ICCS 2021)
,
Krakow, Poland
,
June 16–18
,
M.
Paszynski
,
D.
Kranzlmüller
,
V. V.
Krzhizhanovskaya
,
J. J.
Dongarra
, and
P. M.
Sloot
, eds., Springer International Publishing, pp.
554
567
.
33.
Girshick
,
R.
,
Donahue
,
J.
,
Darrell
,
T.
, and
Malik
,
J.
,
2014
, “
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
,”
2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Columbus, OH
,
June 23–28
.
34.
Li
,
Y.
,
Tarlow
,
D.
,
Brockschmidt
,
M.
, and
Zemel
,
R.
,
2016
, “
Gated Graph Sequence Neural Networks
,”
4th International Conference on Learning Representations (ICLR 2016)
,
San Juan, Puerto Rico
,
May 2–4
.
35.
Gilmer
,
J.
,
Schoenholz
,
S. S.
,
Riley
,
P. F.
,
Vinyals
,
O.
, and
Dahl
,
G. E.
,
2017
, “
Neural Message Passing for Quantum Chemistry
,”
International Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6–11
, pp.
1263
1272
.
36.
Kipf
,
T. N.
, and
Welling
,
M.
,
2017
, “
Semi-Supervised Classification With Graph Convolutional Networks
,”
5th International Conference on Learning Representations (ICLR 2017)
,
Toulon, France
,
Apr. 24–26
.
37.
Veličković
,
P.
,
Cucurull
,
G.
,
Casanova
,
A.
,
Romero
,
A.
,
Liò
,
P.
, and
Bengio
,
Y.
,
2018
, “
Graph Attention Networks
,”
6th International Conference on Learning Representations (ICLR 2018)
,
Vancouver, BC, Canada
,
Apr. 30–May 3
.
38.
Xu
,
K.
,
Hu
,
W.
,
Leskovec
,
J.
, and
Jegelka
,
S.
,
2019
, “
How Powerful Are Graph Neural Networks?
7th International Conference on Learning Representations (ICLR 2019)
,
New Orleans, LA
,
May 6–9
.
39.
Khasahmadi
,
A. H.
,
Hassani
,
K.
,
Moradi
,
P.
,
Lee
,
L.
, and
Morris
,
Q.
,
2020
, “
Memory-Based Graph Networks
,”
8th International Conference on Learning Representations (ICLR 2020)
,
Addis Ababa, Ethiopia
,
Apr. 26–30
.
40.
Xing
,
Y.
,
He
,
T.
,
Xiao
,
T.
,
Wang
,
Y.
,
Xiong
,
Y.
,
Xia
,
W.
,
Wipf
,
D.
,
Zhang
,
Z.
, and
Soatto
,
S.
,
2021
, “
Learning Hierarchical Graph Neural Networks for Image Clustering
,”
2021 International Conference on Computer Vision (ICCV 2021)
,
Montreal, Canada
,
Oct. 11–17
.
41.
Tao
,
F.
,
Sui
,
F.
,
Liu
,
A.
,
Qi
,
Q.
,
Zhang
,
M.
,
Song
,
B.
,
Guo
,
Z.
,
Lu
,
S. C.-Y.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin-Driven Product Design Framework
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3935
3953
.
42.
Feng
,
Y.
,
Zhao
,
Y.
,
Zheng
,
H.
,
Li
,
Z.
, and
Tan
,
J.
,
2020
, “
Data-Driven Product Design Toward Intelligent Manufacturing: A Review
,”
Int. J. Adv. Rob. Syst.
,
17
(
2
), p.
1729881420911257
.
43.
Funkhouser
,
T.
,
Kazhdan
,
M.
,
Shilane
,
P.
,
Min
,
P.
,
Kiefer
,
W.
,
Tal
,
A.
,
Rusinkiewicz
,
S.
, and
Dobkin
,
D.
,
2004
, “
Modeling by Example
,”
ACM Trans. Graph.
,
23
(
3
), pp.
652
663
.
44.
Ferrero
,
V.
,
DuPont
,
B.
,
Hassani
,
K.
, and
Grandi
,
D.
,
2022
, “
Classifying Component Function in Product Assemblies With Graph Neural Networks
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021406
.
45.
Williams
,
G.
,
Meisel
,
N. A.
,
Simpson
,
T. W.
, and
McComb
,
C.
,
2019
, “
Design Repository Effectiveness for 3D Convolutional Neural Networks: Application to Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111701
.
46.
Wang
,
Y.
,
Grandi
,
D.
,
Cui
,
D.
,
Rao
,
V.
, and
Goucher-Lambert
,
K.
,
2021
, “
Understanding Professional Designers’ Knowledge Organization Behavior: A Case Study in Product Teardowns
,”
ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
Aug. 17–19
, Vol.85420, American Society of Mechanical Engineers, p. V006T06A046.
47.
Chaudhuri
,
S.
,
Ritchie
,
D.
,
Wu
,
J.
,
Xu
,
K.
, and
Zhang
,
H.
,
2020
, “
Learning Generative Models of 3D Structures
,”
Comput. Graph. Forum
,
39
(
2
), pp.
643
666
.
48.
Li
,
J.
,
Niu
,
C.
, and
Xu
,
K.
,
2020
, “
Learning Part Generation and Assembly for Structure-Aware Shape Synthesis
,”
34th AAAI Conference on Artificial Intelligence (AAAI 2020)
,
New York, NY
,
Feb. 7–12
.
49.
Mo
,
K.
,
Guerrero
,
P.
,
Yi
,
L.
,
Su
,
H.
,
Wonka
,
P.
,
Mitra
,
N.J.
, and
Guibas
,
L.J.
,
2019
, “
Structurenet: Hierarchical Graph Networks for 3d Shape Generation
,”
ACM Transactions on Graphics
,
38
(
6
), pp.
1
19
.
50.
Slyadnev
,
S.
,
Malyshev
,
A.
,
Voevodin
,
A.
, and
Turlapov
,
V.
,
2020
, “
On the Role of Graph Theory Apparatus in a CAD Modeling Kernel
,”
30th International Conference on Computer Graphics and Machine Vision
,
Saint Petersburg, Russia
,
Sept. 22–25
.
51.
Huang
,
H.
,
Lo
,
S.
,
Zhi
,
G.
, and
Yuen
,
R.
,
2008
, “
Graph Theory-Based Approach for Automatic Recognition of CAD Data
,”
Eng. Appl. Artif. Intell.
,
21
(
7
), pp.
1073
1079
.
52.
Sunil
,
V.
,
Agarwal
,
R.
, and
Pande
,
S.
,
2010
, “
An Approach to Recognize Interacting Features From B-Rep CAD Models of Prismatic Machined Parts Using a Hybrid (Graph and Rule Based) Technique
,”
Comput. Ind.
,
61
(
7
), pp.
686
701
.
53.
Jones
,
B.
,
Hildreth
,
D.
,
Chen
,
D.
,
Baran
,
I.
,
Kim
,
V. G.
, and
Schulz
,
A.
,
2021
, “
Automate: A Dataset and Learning Approach for Automatic Mating of CAD Assemblies
,”
ACM Trans. Graph.
,
40
(
6
), pp.
1
18
.
54.
Pfaff
,
T.
,
Fortunato
,
M.
,
Sanchez-Gonzalez
,
A.
, and
Battaglia
,
P. W.
,
2021
, “
Learning Mesh-Based Simulation With Graph Networks
,”
9th International Conference on Learning Representations (ICLR 2021)
,
Virtual
,
May 3–7
.
55.
Wang
,
M.
,
Zheng
,
D.
,
Ye
,
Z.
,
Gan
,
Q.
,
Li
,
M.
,
Song
,
X.
, and
Zhou
,
J.
,
2019
, “
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
,”
arXiv: Learning
, pp.
1
18
.
56.
Fey
,
M.
, and
Lenssen
,
J. E.
,
2019
, “
Fast Graph Representation Learning with Geometric
,”
7th International Conference on Learning Representations (ICLR 2019)
,
New Orleans, LA
,
May 6–9
.
57.
Hamilton
,
W.
,
Ying
,
Z.
, and
Leskovec
,
J.
,
2017
, “
Inductive Representation Learning on Large Graphs
,”
31st Conference on Neural Information Processing Systems (NIPS 2017)
,
Long Beach, CA
,
Dec. 4–9
, pp.
1024
1034
.
58.
Maas
,
A. L.
,
Hannun
,
A. Y.
, and
Ng
,
A. Y.
,
2013
, “
Rectifier Nonlinearities Improve Neural Network Acoustic Models
,”
30th International Conference on Machine Learning (ICML 2013)
,
Atlanta, GA
,
June 16–21
.
59.
Xu
,
K.
,
Li
,
C.
,
Tian
,
Y.
,
Sonobe
,
T.
,
Kawarabayashi
,
K.-i.
, and
Jegelka
,
S.
,
2018
, “
Representation Learning on Graphs With Jumping Knowledge Networks
,”
35th International Conference on Machine Learning
,
Stockholm, Sweden
,
July 10–15
, PMLR, pp.
5453
5462
.
60.
Ioffe
,
S.
, and
Szegedy
,
C.
,
2015
, “
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
,”
32nd International Conference on Machine Learning
,
Lille, France
,
July 6–11
, PMLR, pp.
448
456
.
61.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2015
, “
Delving Deep Into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
,”
2015 International Conference on Computer Vision
,
Santiago, Chile
,
Dec. 11–15
.
62.
Qi
,
C. R.
,
Su
,
H.
,
Mo
,
K.
, and
Guibas
,
L. J.
,
2016
, “
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
,”
2016 Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 26– July 1
.
63.
Su
,
H.
,
Maji
,
S.
,
Kalogerakis
,
E.
, and
Learned-Miller
,
E. G.
,
2015
, “
Multi-View Convolutional Neural Networks for 3d Shape Recognition
,”
2015 IEEE International Conference on Computer Vision (ICCV)
,
Santiago, Chile
,
Dec. 13–16
.
64.
Kingma
,
D. P.
, and
Ba
,
J.
,
2017
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference on Learning Representations (ICLR 2015)
,
San Diego, CA
,
May 7–9
.
65.
Loshchilov
,
I.
, and
Hutter
,
F.
,
2017
, “
SGDR: Stochastic Gradient Descent with Warm Restarts
,”
5th International Conference on Learning Representations (ICLR 2017)
,
Toulon, France
,
Apr. 24–26
.
66.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 27–30
.
67.
Zhao
,
T.
,
Liu
,
Y.
,
Neves
,
L.
,
Woodford
,
O.
,
Jiang
,
M.
, and
Shah
,
N.
,
2021
, “
Data Augmentation for Graph Neural Networks
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
Hong Kong, China
,
Feb. 2–9
, Vol. 35, pp.
11015
11023
.
68.
Wang
,
P.
,
2007
, “
From Nars to a Thinking Machine
,”
Proceedings of the 2007 Conference on Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006
,
Amsterdam, Netherlands
,
June 7
.
69.
Ashby
,
M. F.
,
2011
,
Materials Selection in Mechanical Design
, 4th ed.,
Butterworth-Heinemann
,
Burlington, MA
.
70.
Cheng
,
Z.
, and
Ma
,
Y.
,
2017
, “
Explicit Function-Based Design Modelling Methodology With Features
,”
J. Eng. Des.
,
28
(
1
), pp.
1
27
.
71.
Bian
,
S.
,
Grandi
,
D.
,
Hassani
,
K.
,
Sadler
,
E.
,
Borijin
,
B.
,
Fernandes
,
A.
,
Wang
,
A.
,
Lu
,
T.
,
Otis
,
R.
,
Ho
,
N.
, and
Li
,
B.
,
2022
, “
Material Prediction for Design Automation Using Graph Representation Learning
,”
ASME 2022 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2022)
,
St. Louis, MO
,
Aug. 14–17
.
72.
Merayo
,
D.
,
Rodríguez-Prieto
,
A.
, and
Camacho
,
A.M.
,
2020
, “
Prediction of Physical and Mechanical Properties for Metallic Materials Selection Using Big Data and Artificial Neural Networks
,”
IEEE Access
,
8
, pp.
13444
13456
.
73.
Veličković
,
P.
,
Cucurull
,
G.
,
Casanova
,
A.
,
Romero
,
A.
,
Liò
,
P.
, and
Bengio
,
Y.
,
2018
, “
Graph Attention Networks
,”
6th International Conference on Learning Representations (ICLR 2018)
,
Vancouver, Canada
,
Apr. 30–May 3
.
You do not currently have access to this content.