Abstract

Defect detection is a crucial direction of deep learning, which is suitable for industrial inspection of product quality in strip steel. As the strip steel production line continuously outputs products, it is necessary to take corresponding measures for the type of defect, once a subtle quality problem is found on steel strips. We propose a new defect area detection and classification method for automation strip steel defect detection. In order to eliminate the way of insufficient data in industrial production line scenarios, we design a transfer learning scheme to support the training of defect region detection. Subsequently, in order to achieve a more accurate classification of defect categories, we designed a deep learning model that integrated the detection results of defect regions and defects feature extraction. After applying our method to the test set and production line, we can achieve extremely high accuracy, reaching 87.11%, while meeting the production speed of the production line compared with other methods. The accuracy and speed of the model realize automatic quality monitoring in the manufacturing process of strip steel.

References

1.
Liu
,
Y.
,
Xu
,
K.
, and
Wang
,
D.
,
2018
, “
Online Surface Defect Identification of Cold Rolled Strips Based on Local Binary Pattern and Extreme Learning Machine
,”
Metals
,
8
(
3
), p.
197
.
2.
Wang
,
W.
,
Lu
,
K.
,
Wu
,
Z.
,
Long
,
H.
,
Zhang
,
J.
,
Chen
,
P.
, and
Wang
,
B.
,
2021
, “
Surface Defects Classification of Hot Rolled Strip Based on Improved Convolutional Neural Network
,”
ISIJ Int.
,
61
(
5
), pp.
1579
1583
.
3.
Feng
,
X.
,
Gao
,
X.
, and
Luo
,
L.
,
2021
, “
A Resnet50-Based Method for Classifying Surface Defects in Hot-Rolled Strip Steel
,”
Mathematics
,
9
(
19
), p.
2359
.
4.
Bochkovskiy
,
A.
,
Wang
,
C.-Y.
, and
Liao
,
H.-Y. M.
,
2020
, “
Yolov4: Optimal Speed and Accuracy of Object Detection
,” preprint arXiv:2004.10934.
5.
Deng
,
J.
,
Dong
,
W.
,
Socher
,
R.
,
Li
,
L.-J.
,
Li
,
K.
, and
Fei-Fei
,
L.
,
2009
, “
Imagenet: A Large-Scale Hierarchical Image Database
,”
2009 IEEE Conference on Computer Vision and Pattern Recognition
,
Miami Beach, FL
,
Nov. 13–20
, IEEE, pp.
248
255
.
6.
Ding
,
X.
,
Zhang
,
X.
,
Ma
,
N.
,
Han
,
J.
,
Ding
,
G.
, and
Sun
,
J.
,
2021
, “
Repvgg: Making VGG-Style Convnets Great Again
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Virtually
,
June 19–25
, pp.
13733
13742
.
7.
Ding
,
X.
,
Guo
,
Y.
,
Ding
,
G.
, and
Han
,
J.
,
2019
, “
Acnet: Strengthening the Kernel Skeletons for Powerful CNN Via Asymmetric Convolution Blocks
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Long Beach, CA
,
June 16–20
, pp.
1911
1920
.
8.
Ioffe
,
S.
, and
Szegedy
,
C.
,
2015
, “
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
,”
International Conference on Machine Learning
,
Lille, France
,
July 6–11
, pp.
448
456
.
9.
LeCun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2324
.
10.
Lin
,
T.-Y.
,
Dollár
,
P.
,
Girshick
,
R.
,
He
,
K.
,
Hariharan
,
B.
, and
Belongie
,
S.
,
2017, pp. 2117–2125
, “
Feature Pyramid Networks for Object Detection
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
2117
2125
.
11.
He
,
Y.
,
Song
,
K.
,
Meng
,
Q.
, and
Yan
,
Y.
,
2019
, “
An End-to-End Steel Surface Defect Detection Approach Via Fusing Multiple Hierarchical Features
,”
IEEE Trans. Instrum. Meas.
,
69
(
4
), pp.
1493
1504
.
12.
Girshick
,
R.
,
2015
, “
Fast R-CNN
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Boston, MA
,
June 7–12
, pp.
1440
1448
.
13.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 26–July 1
, pp.
779
788
.
14.
Girshick
,
R.
,
Donahue
,
J.
,
Darrell
,
T.
, and
Malik
,
J.
,
2014
, “
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Columbus, OH
,
June 24–27
, pp.
580
587
.
15.
Felzenszwalb
,
P.
,
McAllester
,
D.
, and
Ramanan
,
D.
,
2008
, “
A Discriminatively Trained, Multiscale, Deformable Part Model
,”
2008 IEEE Conference on Computer Vision and Pattern Recognition
,
Anchorage, AK
,
June 24–26
, pp.
1
8
.
16.
Misra
,
D.
,
2019
, “
Mish: A Self Regularized Non-monotonic Neural Activation Function
,”
Mach. Learn.
,
4
(
2
), p.
10-48550
.
17.
Nair
,
V.
, and
Hinton
,
G. E.
,
2010
, “
Rectified Linear Units Improve Restricted Boltzmann Machines
,”
27th international conference on machine learning (ICML)
,
Haifa, Israel
,
June 21–24
, pp.
807
814
.
18.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2014
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,” preprint arXiv:1409.1556.
19.
Zagoruyko
,
S.
, and
Komodakis
,
N.
,
2017
, “
Diracnets: Training Very Deep Neural Networks Without Skip-Connections
,” preprint arXiv:1706.00388.
20.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 26–July 1
, pp.
770
778
.
21.
Wang
,
C.-Y.
,
Liao
,
H.-Y. M.
,
Wu
,
Y.-H.
,
Chen
,
P.-Y.
,
Hsieh
,
J.-W.
, and
Yeh
,
I.-H.
,
2020
, “
Cspnet: A New Backbone That Can Enhance Learning Capability of CNN
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
,
Virtually
,
June 14–19
, pp.
390
391
.
22.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2015
, “
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
37
(
9
), pp.
1904
1916
.
23.
Redmon
,
J.
, and
Farhadi
,
A.
,
2018
, “
Yolov3: An Incremental Improvement
,” preprint arXiv:1804.02767.
24.
Wang
,
W.
,
Xie
,
E.
,
Song
,
X.
,
Zang
,
Y.
,
Wang
,
W.
,
Lu
,
T.
,
Yu
,
G.
, and
Shen
,
C.
,
2019
, “
Efficient and Accurate Arbitrary-Shaped Text Detection With Pixel Aggregation Network
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Long Beach, CA
,
June 16–20
, pp.
8440
8449
.
25.
Elfwing
,
S.
,
Uchibe
,
E.
, and
Doya
,
K.
,
2018
, “
Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning
,”
Neural Netw.
,
107
(
1
), pp.
3
11
.
26.
Neubeck
,
A.
, and
Van Gool
,
L.
,
2006
, “
Efficient Non-maximum Suppression
,”
18th International Conference on Pattern Recognition (ICPR’06)
,
Hong Kong
,
Aug. 20–24
, pp.
850
855
.
27.
Xu
,
Q.
,
Nie
,
Z.
,
Xu
,
H.
,
Zhou
,
H.
,
Attar
,
H. R.
,
Li
,
N.
,
Xie
,
F.
, and
Liu
,
X.-J.
,
2022
, “
Supermeshing: A New Deep Learning Architecture for Increasing the Mesh Density of Physical Fields in Metal Forming Numerical Simulation
,”
ASME J. Appl. Mech.
,
89
(
1
), p.
011002
.
28.
Maas
,
A. L.
,
Hannun
,
A. Y.
, and
Ng
,
A. Y.
,
2013
, “
Rectifier Nonlinearities Improve Neural Network Acoustic Models
,”
Proc. ICML, Vol. 30
,
Atlanta, GA
, p.
3
.
29.
Kline
,
D. M.
, and
Berardi
,
V. L.
,
2005
, “
Revisiting Squared-Error and Cross-Entropy Functions for Training Neural Network Classifiers
,”
Neural Comput. Appl.
,
14
(
4
), pp.
310
318
.
30.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
arXiv:1412.6980
. https://arxiv.org/abs/1412.6980
31.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
Xgboost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13–17
,
pp. 785–794
.
You do not currently have access to this content.