Abstract

Acoustic sensitivity analysis is an essential technique to determine the direction of structural-acoustic optimization by evaluating the gradient of the objective functions with respect to the design variables. However, acoustic sensitivity analysis with respect to acoustic impedance, which is an important parameter representing the interior absorbent material in automotive acoustics, is lacking in the study. Moreover, acoustic sensitivity analysis implemented with conventional numerical methods is time and effort-consuming in automotive acoustics, due to the large-scale mesh generation. In this work, the impedance sensitivity analysis for automotive acoustics based on the discontinuous isogeometric boundary element method is presented. The regularized boundary integral equation with impedance boundary conditions is established, then the sensitivity is derived by differentiating the boundary integral equation. The efficiency of the proposed method is improved by employing the parallel technique and generalized minimal residual solver. A long duct example with an analytical solution validates the accuracy of the proposed method, and an automotive passenger compartment subjecting to impedance boundary conditions illustrates that the computing time of the proposed method is one order of magnitude less than the conventional method. This work presents an easily implementable and efficient tool to investigate acoustic sensitivity with respect to impedance, showing great potential in the application of automotive acoustics.

References

1.
Matsumoto
,
T.
,
Tanaka
,
M.
, and
Yamada
,
Y.
,
1995
, “
Design Sensitivity Analysis of Steady-State Acoustic Problems Using Boundary Integral Equation Formulation
,”
JSME Int. J., Ser. C, Dyn. Control Rob. Des. Manuf.
,
38
(
1
), pp.
9
16
.
2.
Rus
,
G.
, and
Gallego
,
R.
,
2005
, “
Boundary Integral Equation for Inclusion and Cavity Shape Sensitivity in Harmonic Elastodynamics
,”
Eng. Anal. Bound. Elem.
,
29
(
1
), pp.
77
91
.
3.
Kim
,
N.-H.
, and
Dong
,
J.
,
2006
, “
Shape Sensitivity Analysis of Sequential Structural–Acoustic Problems Using FEM and BEM
,”
J. Sound Vib.
,
290
(
1–2
), pp.
192
208
.
4.
Kim
,
N.-H.
,
Dong
,
J.
,
Choi
,
K.-K.
,
Vlahopoulos
,
N.
,
Ma
,
Z.-D.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2003
, “
Design Sensitivity Analysis for Sequential Structural-Acoustic Problems
,”
J. Sound Vib.
,
263
(
3
), pp.
569
591
.
5.
Brancati
,
A.
,
Aliabadi
,
M. H.
, and
Mallardo
,
V.
,
2012
, “
A BEM Sensitivity Formulation for Three-Dimensional Active Noise Control
,”
Int. J. Numer. Meth. Eng.
,
90
(
9
), pp.
1183
1206
.
6.
Dong
,
J.
,
Choi
,
K.-K.
, and
Kim
,
N.-H.
,
2004
, “
Design Optimization for Structural-Acoustic Problems Using FEA-BEA With Adjoint Variable Method
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
527
533
.
7.
Yu
,
Y.
, and
Kwak
,
B. M.
,
2011
, “
Design Sensitivity Analysis of Acoustical Damping and Its Application to Design of Musical Bells
,”
Struct. Multidiscip. Optim.
,
44
(
3
), pp.
421
430
.
8.
Feijoo
,
G. R.
,
Malhotra
,
M.
,
Oberai
,
A. A.
, and
Pinsky
,
P. M.
,
2001
, “
Shape Sensitivity Calculations for Exterior Acoustics Problems
,”
Eng. Comput.
,
18
(
3–4
), pp.
376
393
.
9.
Crane
,
S. P.
,
Cunefare
,
K. A.
,
Engelstad
,
S. P.
, and
Powell
,
E. A.
,
1997
, “
Comparison of Design Optimization Formulations for Minimization of Noise Transmission in a Cylinder
,”
J. Aircr.
,
34
(
2
), pp.
236
243
.
10.
Marburg
,
S.
, and
Hardtke
,
H. J.
,
1999
, “
A Study on the Acoustic Boundary Admittance. Determination, Results and Consequences
,”
Eng. Anal. Bound. Elem.
,
23
(
9
), pp.
737
744
.
11.
Raveendra
,
S. T.
,
Vlahopoulos
,
N.
, and
Glaves
,
A.
,
1998
, “
An Indirect Boundary Element Formulation for Multi-valued Impedance Simulation in Structural Acoustics
,”
Appl. Math. Model.
,
22
(
6
), pp.
379
393
.
12.
Zhang
,
Z.
,
Vlahopoulos
,
N.
, and
Raveendra
,
S. T.
,
2003
, “
Formulation of a Numerical Process for Acoustic Impedance Sensitivity Analysis Based on the Indirect Boundary Element Method
,”
Eng. Anal. Bound. Elem.
,
27
(
7
), pp.
671
681
.
13.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Meth. Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.
14.
Mishra
,
B. P.
, and
Barik
,
M.
,
2021
, “
Free Flexural Vibration of Thin Stiffened Plates Using NURBS-Augmented Finite Element Method
,”
Structures
,
33
(
2
), pp.
1620
1632
.
15.
Peng
,
X.
,
Lian
,
H.
,
Ma
,
Z.
, and
Zheng
,
C.
,
2022
, “
Intrinsic Extended Isogeometric Analysis With Emphasis on Capturing High Gradients or Singularities
,”
Eng. Anal. Bound. Elem.
,
134
, pp.
231
240
.
16.
Shimada
,
K.
,
2011
, “
Current Issues and Trends in Meshing and Geometric Processing for Computational Engineering Analyses
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
21008
.
17.
Sinha
,
G. P.
, and
Kumar
,
B.
,
2021
, “
Review on Vibration Analysis of Functionally Graded Material Structural Components With Cracks
,”
J. Vib. Eng. Technol.
,
9
(
1
), pp.
23
49
.
18.
Vazquez
,
R.
,
Buffa
,
A.
,
Di Rienzo
,
L.
, and
Li
,
D.
,
2014
, “
Isogeometric Finite Elements With Surface Impedance Boundary Conditions
,”
IEEE Trans. Magn.
,
50
(
2
), pp.
429
432
.
19.
Kumar
,
D.
,
Wang
,
Z.-P.
,
Poh
,
L.-H.
, and
Quek
,
S.-T.
,
2019
, “
Isogeometric Shape Optimization of Smoothed Petal Auxetics With Prescribed Nonlinear Deformation
,”
Comput. Meth. Appl. Mech. Eng.
,
356
, pp.
16
43
.
20.
Kumar
,
D.
,
Poh
,
L.-H.
, and
Quek
,
S.-T.
,
2021
, “
Isogeometric Shape Optimization of Missing Rib Auxetics With Prescribed Negative Poisson’s Ratio Over Large Strains Using Genetic Algorithm
,”
Int. J. Mech. Sci.
,
193
, p.
106169
.
21.
Pal
,
A.
, and
Rakshit
,
S.
,
2022
, “
Isogeometric Shape Optimization for Design Dependent Loads
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031004
.
22.
Subedi
,
S. C.
,
Verma
,
C. S.
, and
Suresh
,
K.
,
2020
, “
A Review of Methods for the Geometric Post-Processing of Topology Optimized Models
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
60801
.
23.
Gong
,
Y.-P.
,
Dong
,
C.-Y.
, and
Qin
,
X.-C.
,
2017
, “
An Isogeometric Boundary Element Method for Three Dimensional Potential Problems
,”
J. Comput. Appl. Math.
,
313
, pp.
454
468
.
24.
Simpson
,
R. N.
,
Scott
,
M. A.
,
Taus
,
M.
,
Thomas
,
D. C.
, and
Lian
,
H.
,
2014
, “
Acoustic Isogeometric Boundary Element Analysis
,”
Comput. Meth. Appl. Mech. Eng.
,
269
, pp.
265
290
.
25.
Simpson
,
R. N.
,
Bordas
,
S. P. A.
,
Lian
,
H.
, and
Trevelyan
,
J.
,
2013
, “
An Isogeometric Boundary Element Method for Elastostatic Analysis: 2D Implementation Aspects
,”
Comput. Struct.
,
118
(
SI
), pp.
2
12
.
26.
Yoon
,
M.
, and
Cho
,
S.
,
2016
, “
Isogeometric Shape Design Sensitivity Analysis of Elasticity Problems Using Boundary Integral Equations
,”
Eng. Anal. Bound. Elem.
,
66
, pp.
119
128
.
27.
Kumar
,
D.
,
Wang
,
Z.-P.
,
Teoh
,
J.-C.
,
Poh
,
L.-H.
, and
Lim
,
C.-T.
,
2022
, “
Soft Missing Rib Structures With Controllable Negative Poisson’s Ratios Over Large Strains Via Isogeometric Design Optimization
,”
J. Eng. Mech.
,
148
(
11
), p.
4022063
.
28.
Wang
,
Z.-P.
, and
Kumar
,
D.
,
2017
, “
On the Numerical Implementation of Continuous Adjoint Sensitivity for Transient Heat Conduction Problems Using an Isogeometric Approach
,”
Struct. Multidiscip. Optim.
,
56
(
2
), pp.
487
500
.
29.
Chen
,
L.-L.
,
Lian
,
H.
,
Liu
,
Z.
, and
Atroshchenko
,
E.
,
2019
, “
Structural Shape Optimization of Three Dimensional Acoustic Problems With Isogeometric Boundary Element Methods
,”
Comput. Meth. Appl. Mech. Eng.
,
355
, pp.
926
951
.
30.
Chen
,
L.-L.
,
Cheng
,
L.
,
Zhao
,
W.-C.
, and
Liu
,
L.-C.
,
2018
, “
An Isogeometric Approach of Two Dimensional Acoustic Design Sensitivity Analysis and Topology Optimization Analysis for Absorbing Material Distribution
,”
Comput. Meth. Appl. Mech. Eng.
,
336
, pp.
507
532
.
31.
Chen
,
L.-L.
,
Lian
,
H.
,
Natarajan
,
S.
,
Zhao
,
W.
,
Chen
,
X.-Y.
, and
Bordas
,
S. P. A.
,
2022
, “
Multi-frequency Acoustic Topology Optimization of Sound-Absorption Materials With Isogeometric Boundary Element Methods Accelerated by Frequency-Decoupling and Model Order Reduction Techniques
,”
Comput. Meth. Appl. Mech. Eng.
,
395
, p.
114997
.
32.
Gilvey
,
B.
,
Trevelyan
,
J.
, and
Hattori
,
G.
,
2020
, “
Singular Enrichment Functions for Helmholtz Scattering at Corner Locations Using the Boundary Element Method
,”
Int. J. Numer. Meth. Eng.
,
121
(
3
), pp.
519
533
.
33.
Ji
,
D.-F.
,
Lei
,
W.-D.
, and
Li
,
H.-J.
,
2016
, “
Corner Treatment by Assigning Dual Tractions to Every Node for Elastodynamics in TD-BEM
,”
Appl. Math. Comput.
,
284
(
C
), pp.
125
135
.
34.
Zhang
,
X.-S.
, and
Zhang
,
X.-X.
,
2002
, “
Coupling FEM and Discontinuous BEM for Elastostatics and Fluid-Structure Interaction
,”
Eng. Anal. Bound. Elem.
,
26
(
8
), pp.
719
725
.
35.
Sun
,
Y.
,
Trevelyan
,
J.
,
Hattori
,
G.
, and
Lu
,
C. H.
,
2019
, “
Discontinuous Isogeometric Boundary Element (IGABEM) Formulations in 3D Automotive Acoustics
,”
Eng. Anal. Bound. Elem.
,
105
, pp.
303
311
.
36.
Menon
,
S.
, and
Kumar
,
A. V.
,
2020
, “
Isoparametric B-Spline Elements for Immersed Boundary Explicit Dynamic Simulation
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
041010
.
37.
Piegl
,
L. A.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
,
Springer-Verlag
,
Berlin, Germany
.
38.
Rogers
,
D. F.
,
2001
,
An Introduction to NURBS: With Historical Perspective
,
Morgan Kaufmann Publishers
,
San Francisco, CA
.
39.
Boor
,
C. D.
,
1972
, “
On Calculating With B-Splines
,”
J. Approx. Theory
,
6
(
1
), pp.
50
62
.
40.
Salarvand
,
H.
,
Shateri
,
A. R.
,
Nadooshan
,
A. A.
, and
Karimipour
,
I.
,
2022
, “
Effect of the Inner Surface Baffles on Acoustic Characteristics in the Combustion Chamber
,”
J. Vib. Eng. Technol.
,
10
(
8
), pp.
2905
2916
.
41.
Singh
,
B. N.
,
Hota
,
R. N.
,
Dwivedi
,
S.
,
Jha
,
R.
, and
Ranjan
,
V.
,
2022
, “
Acoustic Response of Sigmoid Functionally Graded Thin Plates: A Parametric Investigation
,”
J. Vib. Eng. Technol.
,
10
(
7
), pp.
2509
2529
.
42.
Guiggiani
,
M.
,
Krishnasamy
,
G.
,
Rudolphi
,
T. J.
, and
Rizzo
,
F. J.
,
1992
, “
A General Algorithm for the Numerical Solution of Hypersingular Boundary Integral Equations
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
604
614
.
43.
Liu
,
Y.-L.
,
Stroud
,
A. H.
, and
Secrest
,
D.
,
1966
, “
Gaussian Quadrature Formulas
,”
Math. Comput.
,
21
(
97
), p.
125
.
44.
Peng
,
X.
, and
Lian
,
H.
,
2022
, “
Numerical Aspects of Isogeometric Boundary Element Methods: (Nearly) Singular Quadrature, Trimmed NURBS and Surface Crack Modeling
,”
Cmes-Comp. Model. Eng. Sci.
,
130
(
1
), pp.
513
542
.
45.
Rong
,
J.
,
Wen
,
L.
, and
Xiao
,
J.
,
2014
, “
Efficiency Improvement of the Polar Coordinate Transformation for Evaluating BEM Singular Integrals on Curved Elements
,”
Eng. Anal. Bound. Elem.
,
38
, pp.
83
93
.
46.
Silva
,
J. J.
,
1994
,
Acoustic and Elastic Wave Scattering Using Boundary Elements
,
Computational Mechanics Publications
,
Southampton UK and Boston
.
47.
Yao
,
S.
,
1995
,
Boundary Element Method and Its Applications in Engineering
,
National Defense Industry Press
,
Beijing, China
.
48.
Bialecki
,
R.
,
Dallner
,
R.
, and
Kuhn
,
G.
,
1993
, “
New Application of Hypersingular Equations in the Boundary Element Method
,”
Comput. Meth. Appl. Mech. Eng.
,
103
(
3
), pp.
399
416
.
49.
Brebbia
,
C. A.
,
1978
,
Recent Advances in Boundary Element Methods
,
Pentech Press
,
London, UK
.
50.
Paula
,
F. A. D.
, and
Telles
,
J. C. F.
,
1989
, “
A Comparison Between Point Collocation and Galerkin for Stiffness Matrices Obtained by Boundary Elements
,”
Eng. Anal. Bound. Elem.
,
6
(
3
), pp.
123
128
.
51.
Xu
,
J.-M.
, and
Brebbia
,
C. A.
,
1986
, “
Optimum Positions for the Nodes in Discontinuous Boundary Elements
,”
Boundary Elements VIII
,
8
, pp.
751
767
.
52.
Atkinson
,
K. E.
,
1997
,
The Numerical Solution of Integral Equations of the Second Kind
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
53.
Manolis
,
G. D.
, and
Banerjee
,
P. K.
,
1986
, “
Conforming Versus Non-Conforming Boundary Elements in Three-Dimensional Elastostatics
,”
Int. J. Numer. Meth. Eng.
,
23
(
10
), pp.
1885
1904
.
54.
Liu
,
Y.-J.
, and
Rudolphi
,
T. J.
,
1991
, “
Some Identities for Fundamental Solutions and Their Applications to Weakly-Singular Boundary Element Formulations
,”
Eng. Anal. Bound. Elem.
,
8
(
6
), pp.
301
311
.
55.
Telles
,
J. C. F.
,
1987
, “
A Self-Adaptive Co-Ordinate Transformation for Efficient Numerical Evaluation of General Boundary Element Integrals
,”
Int. J. Numer. Meth. Eng.
,
24
(
5
), pp.
959
973
.
56.
Wang
,
J.
,
2021
, “
Research on the Structural Shape and Topology Optimization Approaches for Acoustic and Vibro-Acoustic Problems Based on the Boundary Element Method
,”
Ph.D. thesis
,
University of Science and Technology of China
,
Hefei, China
.
57.
Pierce
,
A. D.
, and
Beyer
,
R. T.
,
1990
, “
Acoustics: An Introduction to Its Physical Principles and Applications
,”
J. Acoust. Soc.
,
87
(
4
), pp.
1826
1827
.
You do not currently have access to this content.