Abstract

Path planning and collision avoidance are common problems for researchers in vehicle and robotics engineering design. In the case of autonomous ships, the navigation is guided by the regulations for preventing collisions at sea (COLREGs). However, COLREGs do not provide specific guidance for collision avoidance, especially for multi-ship encounters, which is a challenging task even for humans. In short-range path planning and collision avoidance problems, the motion of target ships is often considered as moving at a constant velocity and direction, which cannot be assumed in long-range planning and complex environments. The research challenge here is how to factor in the uncertainty of the motion of the target ships when making long-range path plans. In this paper, we introduce a long-range path planning algorithm for autonomous ships navigating in complex and dynamic environments to reduce the risk of encountering other ships during future motion. Based on the information on the position, speed over ground, and course over ground of other ships, our algorithm can estimate their intentions and future motions based on the probabilistic roadmap algorithm and use a risk-aware A* algorithm to find the optimal path that has low accumulated risk of encountering other ships. A case study is carried out on real automatic identification systems (AIS) datasets. The result shows that our algorithm can help reduce multi-ship encounters in long-term path planning.

References

1.
Asariotis
,
R.
,
Ayala
,
G.
,
Assaf
,
M.
,
Bacrot
,
C.
,
Benamara
,
H.
,
Chantrel
,
D.
,
Cournoyer
,
A.
, et al
,
2021
,
Review of Maritime Transport 2021
, https://unctad.org/webflyer/review-maritime-transport-2021
2.
EMSA.
,
2021
, “
Annual Overview of Marine Casualties and Incidents
,” http://www.emsa. europa.eu/ newsroom/latest-news/download/6955/4266/23.html
3.
International Maritime Organization
,
1972
, “
COLREGs: Convention on the International Regulations for Preventing Collisions at Sea
.”
4.
Sun
,
L.
,
Zhao
,
Y.
, and
Zhang
,
J.
,
2021
, “
Research on Path Planning Algorithm of Unmanned Ship in Narrow Water Area
,”
J. Phys. Conf. Ser.
,
2029
(
1
), p.
012122
.
5.
Zaccone
,
R.
, and
Martelli
,
M.
,
2018
, “
A Random Sampling Based Algorithm for Ship Path Planning With Obstacles
,”
Proceedings of the International Ship Control Systems Symposium (iSCSS), vol. 2
,
Glasgow, UK.
,
Oct. 2–4
, p.
4
.
6.
Zaccone
,
R.
,
Martelli
,
M.
, and
Figari
,
M.
,
2019
, “
A COLREG-Compliant Ship Collision Avoidance Algorithm
,”
2019 18th European Control Conference (ECC)
,
Naples, Italy
,
June 25–28
, IEEE, pp.
2530
2535
.
7.
Chiang
,
H.
, and
Tapia
,
L.
,
2018
, “
COLREG-RRT: An RRT-Based COLREGS-Compliant Motion Planner for Surface Vehicle Navigation
,”
IEEE Robot. Autom. Lett.
,
3
(
3
), pp.
2024
2031
.
8.
Naeem
,
W.
,
Henrique
,
S. C.
, and
Hu
,
L.
,
2016
, “
A Reactive COLREGs-Compliant Navigation Strategy for Autonomous Maritime Navigation
,”
IFAC PapersOnLine
,
49
(
23
), pp.
207
213
.
9.
Mei
,
J.
, and
Arshad
,
M. R.
,
2018
, “
A Smart Navigation and Collision Avoidance Approach for Autonomous Surface Vehicle
,”
Indian J. Geo-Mar. Sci.
,
46
(
12
), pp.
2415
2421
.
10.
Lyu
,
H.
, and
Yin
,
Y.
,
2019
, “
COLREGS-Constrained Real-Time Path Planning for Autonomous Ships Using Modified Artificial Potential Fields
,”
J. Navig.
,
72
(
3
), pp.
588
608
.
11.
Lazarowska
,
A.
,
2015
, “
Ship’s Trajectory Planning for Collision Avoidance at Sea Based on Ant Colony Optimisation
,”
J. Navig.
,
68
(
2
), pp.
291
307
.
12.
Tam
,
C.
, and
Bucknall
,
R.
,
2010
, “
Path-Planning Algorithm for Ships in Close-Range Encounters
,”
J. Mar. Sci. Technol.
,
15
(
4
), pp.
395
407
.
13.
Wang
,
Y.
,
Yao
,
P.
, and
Dou
,
Y.
,
2019
, “
Monitoring Trajectory Optimization for Unmanned Surface Vessel in Sailboat Race
,”
Optik
,
176
, pp.
394
400
.
14.
Kang
,
Y.
,
Chen
,
W.
,
Zhu
,
D.
,
Wang
,
J.
, and
Xie
,
Q.
,
2018
, “
Collision Avoidance Path Planning for Ships by Particle Swarm Optimization
,”
J. Mar. Sci. Technol.
,
26
(
6
), pp.
777
786
.
15.
Kim
,
H.
,
Kim
,
S.
,
Jeon
,
M.
,
Kim
,
J.
,
Song
,
S.
, and
Paik
,
K.
,
2017
, “
A Study on Path Optimization Method of an Unmanned Surface Vehicle Under Environmental Loads Using Genetic Algorithm
,”
Ocean Eng.
,
142
, pp.
616
624
.
16.
Liu
,
X.
, and
Jin
,
Y.
,
2020
, “
Artificial Intelligence for Engineering Design, Analysis and Manufacturing Reinforcement Learning-Based Collision Avoidance: Impact of Reward Function and Knowledge Transfer
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
34
(
2
), pp.
207
222
.
17.
Wu
,
X.
,
Chen
,
H.
,
Chen
,
C.
,
Zhong
,
M.
,
Xie
,
S.
,
Guo
,
Y.
, and
Fujita
,
H.
,
2020
, “
The Autonomous Navigation and Obstacle Avoidance for USVs With ANOA Deep Reinforcement Learning Method
,”
Knowl. Based Syst.
,
196
, p.
105201
.
18.
Singh
,
Y.
,
Sharma
,
S.
,
Sutton
,
R.
,
Hatton
,
D.
, and
Khan
,
A.
,
2018
, “
A Constrained A* Approach Towards Optimal Path Planning for an Unmanned Surface Vehicle in a Maritime Environment Containing Dynamic Obstacles and Ocean Currents
,”
Ocean Eng.
,
169
, pp.
187
201
.
19.
Liu
,
Y.
, and
Bucknall
,
R.
,
2015
, “
Path Planning Algorithm for Unmanned Surface Vehicle Formations in a Practical Maritime Environment
,”
Ocean Eng.
,
97
, pp.
126
144
.
20.
Yan
,
X.
,
Wang
,
S.
,
Ma
,
F.
,
Liu
,
Y.
, and
Wang
,
J.
,
2020
, “
A Novel Path Planning Approach for Smart Cargo Ships Based on Anisotropic Fast Marching
,”
Expert Syst. Appl.
,
159
, p.
113558
.
21.
Beser
,
F.
, and
Yildirim
,
T.
,
2018
, “
COLREGS Based Path Planning and Bearing Only Obstacle Avoidance for Autonomous Unmanned Surface Vehicles
,”
Procedia Comput. Sci.
,
131
, pp.
633
640
.
22.
Williams
,
E.
, and
Jin
,
Y.
,
2019
, “
Dynamic Probability Fields for Risk Assessment and Guidance Solutions
,”
Annu. Navig.
,
26
(
1
), pp.
33
45
.
23.
He
,
Y.
,
Li
,
Z.
,
Mou
,
J.
,
Hu
,
W.
,
Li
,
L.
, and
Wang
,
B.
,
2021
, “
Collision-Avoidance Path Planning for Multi-Ship Encounters Considering Ship Manoeuvrability and COLREGs
,”
Transp. Saf. Environ.
,
3
(
2
), pp.
103
113
.
24.
Song
,
L.
,
Chen
,
Z.
,
Dong
,
Z.
,
Xiang
,
Z.
,
Mao
,
Y.
,
Su
,
Y.
, and
Hu
,
K.
,
2019
, “
Collision Avoidance Planning for Unmanned Surface Vehicle Based on Eccentric Expansion
,”
Int. J. Adv. Robot. Syst.
,
16
(
3
), p.
1729881419851945
.
25.
Campbell
,
S.
, and
Naeem
,
W.
,
2012
, “
A Rule-Based Heuristic Method for COLREGS-Compliant Collision Avoidance for an Unmanned Surface Vehicle
,”
IFAC Proc. Vol.
,
45
(
27
), pp.
386
391
.
26.
Shah
,
B.
, and
Gupta
,
S.
,
2020
, “
Long-Distance Path Planning for Unmanned Surface Vehicles in Complex Marine Environment
,”
IEEE J. Ocean. Eng.
,
45
(
3
), pp.
813
830
.
27.
Shah
,
B.
,
Švec
,
P.
,
Bertaska
,
I.
,
Sinisterra
,
A.
,
Klinger
,
W.
,
Ellenrieder
,
K.
,
Dhanak
,
M.
, and
Gupta
,
S.
,
2015
, “
Resolution-Adaptive Risk-Aware Trajectory Planning for Surface Vehicles Operating in Congested Civilian Traffic
,”
Auton. Robots
,
40
(
7
), pp.
1139
1163
.
28.
Švec
,
P.
,
Thakur
,
A.
,
Raboin
,
E.
,
Shah
,
B.
, and
Gupta
,
S.
,
2013
, “
Target Following With Motion Prediction for Unmanned Surface Vehicle Operating in Cluttered Environments
,”
Auton. Robots
,
36
(
4
), pp.
383
405
.
29.
Rajendran
,
P.
,
Moscicki
,
T.
,
Wampler
,
J.
,
Ellenrieder
,
K.
, and
Gupta
,
S.
,
2020
, “
Trajectory Planning for Unmanned Surface Vehicles Operating Under Wave-Induced Motion Uncertainty in Dynamic Environments
,”
Int. J. Adv. Robot. Syst.
,
17
(
6
), p.
172988142095894
.
30.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2011
, “
Sampling-Based Algorithms for Optimal Motion Planning
,”
Int. J. Robot. Res.
,
30
(
7
), pp.
846
894
.
31.
Hsu
,
D.
,
Kindel
,
R.
,
Latombe
,
J.
, and
Rock
,
S.
,
2002
, “
Randomized Kinodynamic Motion Planning With Moving Obstacles
,”
Int. J. Robot. Res.
,
21
(
3
), pp.
233
255
.
32.
Bohlin
,
R.
, and
Kavraki
,
L. E.
,
2000
, “
Path Planning Using Lazy PRM
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
,
San Francisco, CA
,
Apr. 24–28
, IEEE, vol. 1, pp.
521
528
.
33.
Petraška
,
A.
,
Čižiūnienė
,
K.
,
Jarašūnienė
,
A.
,
Maruschak
,
P.
, and
Prentkovskis
,
O.
,
2017
, “
Algorithm for the Assessment of Heavyweight and Oversize Cargo Transportation Routes
,”
J. Bus. Econ. Manag.
,
18
(
6
), pp.
1098
1114
.
34.
Meng
,
Q.
,
Du
,
Y.
, and
Wang
,
Y.
,
2016
, “
Shipping Log Data Based Container Ship Fuel Efficiency Modeling
,”
Transp. Res. B: Methodol.
,
83
, pp.
207
229
.
You do not currently have access to this content.