Abstract

Conditional invertible neural networks (cINNs) were used for generative inverse design of aerodynamic shapes for a given aerodynamic performance target. The methodology was used to generate two-dimensional (2D) airfoil shapes for a target lift coefficient and three-dimensional (3D) vehicle shapes for a low drag vehicle given an aerodynamic drag coefficient target. Training data for both cases were generated for the forward process i.e., aerodynamic performance as a function of design variables that define the airfoil or vehicle shape, using design of experiments (DOE) and computational fluid dynamics (CFD) simulations. Due to the structure of the cINNs, the inverse process was learned implicitly, i.e., samples from latent space were transformed back to the design variables. The designs generated by the trained cINN model were simulated under identical conditions to check if they met the desired aerodynamic performance target. The distribution of design variables conditioned on a performance target learned by the cINN model was compared to the distribution in the training data. cINNs provide an easy-to-use tool to generate new designs that meet the desired aerodynamic performance, thereby, reducing the iteration time between aerodynamicists and stylists. In case of vehicle shape generation, since all generated vehicle shapes meet the aerodynamic performance target, the designer can select the shapes that do not conflict with other design constraints such as the interior volume, comfort, styling, and various safety requirements.

References

1.
Sripad
,
S.
, and
Viswanathan
,
V.
,
2017
, “
Evaluation of Current, Future, and Beyond Li-ion Batteries for the Electrification of Light Commercial Vehicles: Challenges and Opportunities
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3635
E3646
.
2.
Mohan
,
A.
,
Sripad
,
S.
,
Vaishnav
,
P.
, and
Viswanathan
,
V.
,
2020
, “
Trade-Offs Between Automation and Light Vehicle Electrification
,”
Nat. Energy
,
5
(
7
), pp.
543
549
.
3.
Warey
,
A.
,
Kaushik
,
S.
, and
Han
,
T.
,
2021
, “
Investigation of Numerical Diffusion in Aerodynamic Flow Simulations With Physics Informed Neural Networks
”,
arXiv:2103.03115
[physics.flu-dyn].
4.
Jameson
,
A.
,
1988
, “
Aerodynamic Design via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.
5.
Othmer
,
C.
,
de Villiers
,
E.
, and
Weller
,
H.
,
2007
, “
Implementation of a Continuous Adjoint for Topology Optimization of Ducted Flows
,”
18th AIAA Computational Fluid Dynamics Conference
,
Miami, FL
,
June 25
, p.
3947
, AIAA 2007-3947.
6.
Hill
,
D. C.
,
1995
, “
Adjoint Systems and Their Role in the Receptivity Problem for Boundary Layers
,”
J. Fluid Mech.
,
292
, pp.
183
204
.
7.
Han
,
T.
,
Hill
,
D. C.
, and
Jindal
,
S.
,
2011
, “
Adjoint Method for Aerodynamic Shape Improvement in Comparison With Surface Pressure Gradient Method
,”
SAE Int. J. Passeng. Cars - Mech. Syst.
,
4
(
1
), pp.
100
107
.
8.
Han
,
T.
, and
Kim
,
Y.
,
2010
, “
Aerodynamic Shape Improvement Based on Surface Pressure Gradients in the Stream-Wise and the Transverse Directions
”, SAE Technical Paper No. 2010-01-051.
9.
Bhatnagar
,
S.
,
Afshar
,
Y.
,
Pan
,
S.
,
Duraisamy
,
K.
, and
Kaushik
,
S.
,
2019
, “
Prediction of Aerodynamic Flow Fields Using Convolutional Neural Networks
,”
Comput. Mech.
,
64
(
2
), pp.
525
545
.
10.
Dube
,
P.
, and
Hiravennavar
,
S.
,
2020
, “
Machine Learning Approach to Predict Aerodynamic Performance of Underhood and Underbody Drag Enablers
”, SAE Technical Paper No. 2020-01-0684.
11.
Duvall
,
J.
,
Duraisamy
,
K.
, and
Pan
,
S.
,
2021
, “
Non-linear Independent Dual System (NIDS) for Discretization-Independent Surrogate Modeling Over Complex Geometries
”, arXiv:2109.07018 [physics.comp-ph].
12.
Jacob
,
S.
,
Mrosek
,
M.
,
Othmer
,
C.
, and
Köstler
,
H.
,
2021
, “
Deep Learning for Real-Time Aerodynamic Evaluations of Arbitrary Vehicle Shapes
”, arXiv:2108.05798 [cs.CE].
13.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Networks
”,
arXiv:1406.2661v1
[stat.ML].
14.
Radford
,
A.
,
Metz
,
L.
, and
Chintala
,
S.
,
2016
, “
Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks
”,
arXiv:1511.06434v2
[cs.LG].
15.
Jin
,
Y.
,
Zhang
,
J.
,
Li
,
M.
,
Tian
,
Y.
,
Zhu
,
H.
, and
Fang
,
Z.
,
2017
, “
Towards the Automatic Anime Characters Creation With Generative Adversarial Networks
”,
arXiv:1708.05509v1
[cs.CV].
16.
Isola
,
P.
,
Zhu
,
J.
,
Zhou
,
T.
, and
Efros
,
A. A.
,
2016
, “
Image-To-Image Translation With Conditional Adversarial Networks
”, arXiv:1611.07004v3 [cs.CV].
17.
Zhu
,
J.
,
Park
,
T.
,
Isola
,
P.
, and
Efros
,
A. A.
,
2017
, “
Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks
”, arXiv:1703.10593 [cs.CV].
18.
Mirza
,
M.
, and
Osindero
,
S.
,
2014
, “
Conditional Generative Adversarial Nets
”,
arXiv:1411.1784
[cs.LG].
19.
Dumoulin
,
V.
,
Shlens
,
J.
, and
Kudlur
,
M.
,
2016
, “
A Learned Representation for Artistic Style
”,
arXiv:1610.07629
[cs.CV].
20.
Huang
,
X.
, and
Belongie
,
S.
,
2017
, “
Arbitrary Style Transfer in Real-Time With Adaptive Instance Normalization
”,
arXiv:1703.06868
[cs.CV].
21.
Park
,
T.
,
Liu
,
M.
,
Wang
,
T.
, and
Zhu
,
J.
,
2019
, “
Semantic Image Synthesis With Spatially-Adaptive Normalization
”,
arXiv:1903.07291
[cs.CV].
22.
Brock
,
A.
,
Donahue
,
J.
, and
Simonyan
,
K.
,
2018
, “
Large Scale GAN Training for High Fidelity Natural Image Synthesis
”,
arXiv:1809.11096
[cs.LG].
23.
Ardizzone
,
L.
,
Lüth
,
C.
,
Kruse
,
J.
,
Rother
,
C.
, and
Köthe
,
U.
,
2019
, “
Guided Image Generation With Conditional Invertible Neural Networks
”,
arXiv:1907.02392
[cs.CV].
24.
Sohn
,
K.
,
Lee
,
H.
, and
Yan
,
X.
,
2015
, “
Learning Structured Output Representation Using Deep Conditional Generative Models
”,
Advances in Neural Information Processing Systems (NeurIPS)
,
Montreal Canada
,
Dec. 7
, p.
3483
3491
.
25.
Kingma
,
D. P.
,
Salimans
,
T.
,
Jozefowicz
,
R.
,
Chen
,
X.
,
Sutskever
,
I.
, and
Welling
,
M.
,
2016
, “
Improving Variational Inference With Inverse Autoregressive Flow
”,
arXiv:1606.04934
[cs.LG].
26.
Ardizzone
,
L.
,
Kruse
,
J.
,
Wirkert
,
S.
,
Rahner
,
D.
,
Pellegrini
,
E. W.
,
Klessen
,
R. S.
,
Maier-Hein
,
L.
,
Rother
,
C.
, and
Köthe
,
U.
,
2018
, “
Analyzing Inverse Problems With Invertible Neural Networks
”,
arXiv:1808.04730
[cs.LG].
27.
Dinh
,
L.
,
Sohl-Dickstein
,
J.
, and
Bengio
,
S.
,
2016
, “
Density Estimation Using Real NVP
”,
arXiv:1605.08803
[cs.LG].
28.
Kingma
,
D. P.
, and
Dhariwal
,
P.
,
2018
, “
Glow: Generative Flow With Invertible 1 (1 Convolutions
”,
arXiv:1807.03039
[stat.ML].
29.
Kruse
,
J.
,
Ardizzone
,
L.
,
Rother
,
C.
, and
Köthe
,
U.
,
2021
, “
Benchmarking Invertible Architectures on Inverse Problems
”,
arXiv:2101.10763
[cs.LG].
30.
Padmanabha
,
G.
, and
Zabaras
,
N.
,
2021
, “
Solving Inverse Problems Using Conditional Invertible Neural Networks
,”
J. Comput. Phys.
,
433
, p.
110194
.
31.
Ghosh
,
S.
,
Padmanabha
,
G. A.
,
Peng
,
C.
,
Atkinson
,
S.
,
Andreoli
,
V.
,
Pandita
,
P.
,
Vandeputte
,
T.
,
Zabaras
,
N.
,
Wang
,
L.
, and
Khan
,
G.
,
2021
, “
Pro-ML Ideas: A Probabilistic Framework for Explicit Inverse Design Using Invertible Neural Network
”, AIAA 2021-0465, AIAA Scitech 2021 Forum.
32.
Nair
,
V.
, and
Hinton
,
G. E.
,
2010
, “
Rectified Linear Units Improve Restricted Boltzmann Machines
,”
Proceedings of the 27th International Conference on International Conference on Machine Learning
,
Haifa, Israel
,
June 21
, pp.
807
814
.
33.
Drela
,
M.
,
1989
, “
XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils, Mueller T.J. eds Low Reynolds Number Aerodynamics
,”
Lect. Notes Eng.
,
54
, pp.
1
12
.
34.
Shepard
,
W.
,
Claypole
,
G.
,
Kosowski
,
M.
, and
York
,
R.
,
2000
, “
Architecture for Robust Efficiency: GM's “Precept” PNGV Vehicle
”, SAE Technical Paper 2000-01-1582.
35.
Sloane
,
C.
,
Zemke
,
B.
,
Claypole
,
G.
, and
Laws
,
L.
,
2000
, “
Rationale for Technology Selections in GM's PNGV Precept Concept Car Based on Systems Analysis
”, SAE Technical Paper 2000-01-1567.
36.
ANSA Software
,
2022
, https://www.beta-cae.com/ansa.htm.
37.
iconCFD Software
,
2022
, https://www.iconcfd.com/.
38.
GitHub repository
,
2022
, https://github.com/VLL-HD/FrEIA.
39.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
, et al
,
2019
, “
Pytorch: An Imperative Style, High-Performance Deep Learning Library
”,
arXiv:1912.01703
[cs.LG].
You do not currently have access to this content.