Abstract

This paper explores the function approximation characteristics of Artificial Neural Network (ANN) by implementing it on the vertical-axis Savonius wind rotor technology. In this regard, a suitable experimental dataset documented in literature is exploited to train the ANN comprising the rotor performance as output and 11 different design and operating parameters as input with the help of matlab R2020b software. Multiple ANN models are trained by varying the number of hidden neurons which are then evaluated based on their estimation error and correlation coefficient (R) as decision criteria. The optimum ANN architecture demonstrates R ≈ 0.96 and 0.98 for the testing and training datasets, respectively. Further, in the quest of finding the optimum performance from the entire power curve of the rotor, the Golden Section Method (GSM) is linked with the trained ANN model. Using these soft computing techniques, a parametric study is carried out to understand the dependency of rotor performance on their design and operating parameters. At the end, a graphical interface is developed as a product so as to allow the user to predict the performance of the new rotor designs intuitively.

References

1.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design: With Emphasis on Darrieus Concept
,
Presses inter Polytechnique
,
Montréal, QC, Canada
.
2.
Manwell
,
J. F.
,
Mcgovan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory, Design and Application
,
John Wiley & Sons Ltd
,
Chichester, West Sussex, UK
.
3.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
050801
.
4.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3054
3064
.
5.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review of Experimental Investigations Into the Design, Performance and Optimization of the Savonius Rotor
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
4
), pp.
528
542
.
6.
Rathod
,
U. H.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2022
, “
On the Application of Machine Learning in Savonius Wind Turbine Technology : An Estimation of Turbine Performance Using Artificial Neural Network and Genetic Expression Programming
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061301
.
7.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
.
8.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
.
9.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Netw.
,
2
(
5
), pp.
359
356
.
10.
Kshirsagar
,
C. M.
, and
Anand
,
R.
,
2017
, “
Artificial Neural Network Applied Forecast on a Parametric Study of Calophyllum Inophyllum Methyl Ester-Diesel Engine out Responses
,”
Appl. Energy
,
189
, pp.
555
567
.
11.
Tran
,
V. L.
, and
Kim
,
S. E.
,
2021
, “
A Practical ANN Model for Predicting the PSS of Two-Way Reinforced Concrete Slabs
,”
Eng. Comput.
,
37
(
3
), pp.
2303
2327
.
12.
Pala
,
M.
, and
Caglar
,
N.
,
2007
, “
A Parametric Study for Distortional Buckling Stress on Cold-Formed Steel Using a Neural Network
,”
J. Constr. Steel Res.
,
63
(
5
), pp.
686
691
.
13.
Sarkar
,
B.
,
Sengupta
,
A.
,
De
,
S.
, and
Dasgupta
,
S.
,
2009
, “
Prediction of Permeate Flux During Electric Field Enhanced Cross-flow Ultrafiltration—A Neural Network Approach
,”
Sep. Purif. Technol.
,
65
(
3
), pp.
260
268
.
14.
Cao
,
M.
,
Wang
,
K. W.
,
Devries
,
L.
,
Fujii
,
Y.
,
Tobler
,
W. E.
,
Pietron
,
G. M.
,
Tibbls
,
T.
, and
McCallum
,
J.
,
2004
, “
Steady State Hydraulic Valve Fluid Field Estimator Based on Non-dimensional Artificial Neural Network (NDANN)
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
3
), pp.
257
270
.
15.
Li
,
G.
,
Ke
,
H.
,
Li
,
C.
, and
Li
,
B.
,
2020
, “
Thermal Error Modeling of Feed Axis in Machine Tools Using Particle Swarm Optimization-Based Generalized Regression Neural Network
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021003
.
16.
Dhar
,
V. K.
,
Tickoo
,
A. K.
,
Koul
,
R.
, and
Dubey
,
B. P.
,
2010
, “
Comparative Performance of Some Popular Artificial Neural Network Algorithms On
,”
Indian Acad. Sci.
,
74
(
2
), pp.
307
324
.
17.
Zhang
,
W.
,
Zhang
,
R.
,
Wu
,
C.
,
Goh
,
A. T. C.
,
Lacasse
,
S.
,
Liu
,
Z.
, and
Liu
,
H.
,
2020
, “
State-of-the-Art Review of Soft Computing Applications in Underground Excavations
,”
Geosci. Front.
,
11
(
4
), pp.
1095
1106
.
18.
Szul
,
T.
,
Necka
,
K.
, and
Mathia
,
T. G.
,
2020
, “
Neural Methods Comparison for Prediction of Heating Energy Based on Few Hundreds Enhanced Buildings in Four Season’s Climate
,”
Energies
,
13
(
20
), pp.
1
17
.
19.
Ahmadi
,
M. H.
,
Mohseni-Gharyehsafa
,
B.
,
Farzaneh-Gord
,
M.
,
Jilte
,
R. D.
,
Kumar
,
R.
, and
Chau
,
K. W.
,
2019
, “
Applicability of Connectionist Methods to Predict Dynamic Viscosity of Silver/Water Nanofluid by Using ANN-MLP, MARS and MPR Algorithms
,”
Eng. Appl. Comput. Fluid Mech.
,
13
(
1
), pp.
220
228
.
20.
Kirbaş
,
U.
, and
Karaşahin
,
M.
,
2016
, “
Performance Models for Hot Mix Asphalt Pavements in Urban Roads
,”
Constr. Build. Mater.
,
116
, pp.
281
288
.
21.
Wu
,
Z.
,
Zhu
,
M.
,
Kang
,
Y.
,
Leung
,
E. L. H.
,
Lei
,
T.
,
Shen
,
C.
,
Jiang
,
D.
,
Wang
,
Z.
,
Cao
,
D.
, and
Hou
,
T.
,
2021
, “
Do We Need Different Machine Learning Algorithms for QSAR Modeling? A Comprehensive Assessment of 16 Machine Learning Algorithms on 14 QSAR Data Sets
,”
Brief. Bioinform.
,
22
(
4
), pp.
1
17
.
22.
Alizamir
,
M.
,
Kim
,
S.
,
Kisi
,
O.
, and
Zounemat-Kermani
,
M.
,
2020
, “
A Comparative Study of Several Machine Learning Based Non-linear Regression Methods in Estimating Solar Radiation: Case Studies of the USA and Turkey Regions
,”
Energy
,
197
, p.
117239
.
23.
Das
,
D.
,
Desai
,
S.
,
Kulkarni
,
V.
, and
Gadgil
,
H.
,
2019
, “
Performance Assessment of Energy Deposition Based Drag Reduction Technique for Earth and Mars Flight Conditions
,”
Acta Astronaut.
,
159
, pp.
418
428
.
24.
Yazıcı
,
İ
,
Yaylacı
,
E. K.
, and
Yalçın
,
F.
,
2021
, “
Modified Golden Section Search Based MPPT Algorithm for the WECS
,”
Eng. Sci. Technol. Int. J.
,
24
, pp.
1123–1133
.
25.
Kheldoun
,
A.
,
Bradai
,
R.
,
Boukenoui
,
R.
, and
Mellit
,
A.
,
2016
, “
A New Golden Section Method-Based Maximum Power Point Tracking Algorithm for Photovoltaic Systems
,”
Energy Convers. Manage.
,
111
, pp.
125
136
.
26.
Balaji
,
C.
,
2021
, “Search Methods,”
Thermal System Design and Optimization
,
Springer
,
New York, India
, pp.
177
242
.
27.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Investigations on Single Stage, Two Stage and Three Stage Conventional Savonius Rotor
,”
Int. J. Energy Res.
,
32
(
10
), pp.
877
895
.
28.
Dua
,
D.
, and
Graff
,
C.
,
2019
, “UCI Machine Learning Repository,” School of Information and Computer Science, University of California, Irvine, CA, http://archive.ics.uci.edu/ml.
29.
Mohammadi
,
M.
,
Lakestani
,
M.
, and
Mohamed
,
M. H.
,
2018
, “
Intelligent Parameter Optimization of Savonius Rotor Using Artificial Neural Network and Genetic Algorithm
,”
Energy
,
143
, pp.
56
68
.
30.
Sargolzaei
,
J.
, and
Kianifar
,
A.
,
2009
, “
Modeling and Simulation of Wind Turbine Savonius Rotors Using Artificial Neural Networks for Estimation of the Power Ratio and Torque
,”
Simul. Model. Pract. Theory
,
17
(
7
), pp.
1290
1298
.
31.
Haykin
,
S.
,
2009
,
Neural Networks and Learning Machines
,
Pearson Education Inc.
,
Hoboken, NJ
.
32.
Fakir
,
R.
,
Barka
,
N.
, and
Brousseau
,
J.
,
2019
, “
Servo-Control Applied to the Parameters of the Laser Hardening Process for a Regular Case Depth of 4340 Steel Cylindrical Specimen
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
3
), p.
031007
.
33.
Liew
,
K. M.
,
Ray
,
T.
,
Tan
,
H.
, and
Tan
,
M. J.
,
2002
, “
Evolutionary Optimization and Use of Neural Network for Optimum Stamping Process Design for Minimum Springback
,”
ASME J. Comput. Inf. Sci. Eng.
,
2
(
1
), pp.
38
44
.
34.
Soni
,
S.
,
Khanna
,
P.
, and
Tandon
,
P.
,
2013
, “
Knowledge Support System for Aesthetics in Product Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
1
), p.
011006
.
35.
Beale
,
M. H.
,
Hagan
,
M. T.
, and
Demuth
,
H. B.
,
2010
,
Neural Network Toolbox TM 7 User’s Guide
,
The Mathworks, Inc.
,
Natick, MA
.
36.
Meiller
,
M. F.
,
1993
, “
A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning
,”
Neural Netw.
,
6
(
4
), pp.
525
533
.
37.
Hunter
,
D.
,
Yu
,
H.
,
Member
,
S.
,
Pukish
,
M. S.
,
Member
,
S.
,
Kolbusz
,
J.
, and
Wilamowski
,
B. M.
,
2012
, “
Selection of Proper Neural Network Sizes and Architectures—A Comparative Study
,”
IEEE Trans. Ind. Inform.
,
8
(
2
), pp.
228
240
.
38.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feedforward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Netw.
,
5
(
6
), pp.
2
6
.
39.
Motamarri
,
S.
, and
Boccelli
,
D. L.
,
2012
, “
Development of a Neural-Based Forecasting Tool to Classify Recreational Water Quality Using Fecal Indicator Organisms
,”
Water Res.
,
46
(
14
), pp.
4508
4520
.
40.
Bagheri
,
A.
,
Nazari
,
A.
, and
Sanjayan
,
J.
,
2019
, “
The Use of Machine Learning in Boron-Based Geopolymers : Function Approximation of Compressive Strength by ANN and GP
,”
Measurement
,
141
, pp.
241
249
.
41.
Mohammadi
,
F.
,
Bina
,
B.
,
Karimi
,
H.
,
Rahimi
,
S.
, and
Yavari
,
Z.
,
2020
, “
Modeling and Sensitivity Analysis of the Alkylphenols Removal via Moving Bed Biofilm Reactor Using Artificial Neural Networks: Comparison of Levenberg Marquardt and Particle Swarm Optimization Training Algorithms
,”
Biochem. Eng. J.
,
161
, p.
107685
.
42.
Mohamad
,
N.
,
Zaini
,
F.
,
Johari
,
A.
,
Yassin
,
I.
, and
Zabidi
,
A.
,
2010
, “
Comparison Between Levenberg-Marquardt and Scaled Conjugate Gradient Training Algorithms for Breast Cancer Diagnosis Using MLP
,”
Proceedings of the 6International Colloquium on Signal Processing & Applications (CSPA)
,
Malacca, Malaysia
,
May 21–23
, IEEE, pp.
1
7
.
43.
Matsumoto
,
M.
, and
Nishimura
,
T.
,
1998
, “
Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-random Number Generator
,”
ACM Trans. Model. Comput. Simul.
,
8
(
1
), pp.
3
30
.
44.
Sheldahl
,
R. E.
,
Feltz
,
L. V.
, and
Blackwell
,
B. F.
,
1978
, “
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,”
J. Energy
,
2
(
3
), pp.
160
164
.
45.
Hayashi
,
T.
,
Li
,
Y.
, and
Hara
,
Y.
,
2005
, “
Wind Tunnel Tests on a Different Phase Three-Stage
,”
JSME Int. J. Ser. B
,
48
(
1
), pp.
9
16
.
46.
Fujisawa
,
N.
, and
Gotoh
,
F.
,
1992
, “
Pressure Measurements and Flow Visualization Study of a Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
39
(
1–3
), pp.
51
60
.
47.
Fujisawa
,
N.
,
1992
, “
On the Torque Mechanism of Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
40
(
3
), pp.
277
292
.
48.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
, pp.
117
125
.
49.
Ushiyama
,
I.
,
Nagai
,
H.
, and
Shinoda
,
J.
,
1986
, “
Experimentally Determining the Optimum Design Configuration for Savonius Rotors
,”
Trans. Jpn. Soc. Mech. Eng. Ser. B
,
52
(
480
), pp.
2973
2982
.
You do not currently have access to this content.