Abstract

Measuring the motions of human hand joints is often a challenge due to the high number of degrees-of-freedom. In this study, we proposed a hand tracking system utilizing action cameras and ArUco markers to continuously measure the rotation angles of hand joints during motion. Three methods were developed to estimate the joint rotation angles. The pos-based method transforms marker positions to a reference coordinate system and extracts a hand skeleton to identify the rotation angles. Similarly, the orient-x-based method calculates the rotation angles from the transformed x-orientations of the detected markers in the reference coordinate system. In contrast, the orient-mat-based method first identifies the rotation angles in each camera coordinate system using the detected orientations and then synthesizes the results regarding each joint. Experiment results indicated that the repeatability errors with one camera regarding different marker sizes were around 2.64–27.56 deg and 0.60–2.36 deg using the marker positions and orientations, respectively. With multiple cameras employed, the joint rotation angles measured by using the three methods were compared with that measured by a goniometer. Comparison results indicated that the results of using the orient-mat-based method are more stable and efficient and can describe more types of movements. The effectiveness of this method was further verified by capturing hand movements of several participants. Therefore, it is recommended for measuring joint rotation angles in practical setups.

References

1.
ASSH
,
2021
, “
Body Anatomy: Upper Extremity Joints | The Hand Society
,” https://www.assh.org/handcareprod/safety/joints, Accessed June 15, 2021.
2.
Bullock
,
I. M.
,
Júlia
,
B.
, and
Aaron
,
M. D.
,
2012
, “
Assessing Assumptions in Kinematic Hand Models: A Review
,”
4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Rome, Italy
,
June 24–27
, pp.
139
146
.
3.
Kuch
,
J. J.
, and
Huang
,
T. S.
,
1994
, “
Human Computer Interaction via the Human Hand: A Hand Model
,”
Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers
,
Pacific Grove, CA
,
Oct. 31–Nov. 2
, pp.
1252
1256
.
4.
Reissner
,
L.
,
Gabriella
,
F.
,
Renate
,
L.
,
Pietro
,
G.
, and
Maurizio
,
C.
,
2019
, “
Assessment of Hand Function During Activities of Daily Living Using Motion Tracking Cameras: A Systematic Review
,”
Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
,
233
(
8
), pp.
764
783
.
5.
Yang
,
Y.
,
Yuan
,
T.
,
Huysmans
,
T.
,
Elkhuizen
,
W. S.
,
Tajdari
,
F.
, and
Song
,
Y.
,
2021
, “
Posture-Invariant Three Dimensional Human Hand Statistical Shape Model
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031006
.
6.
Yang
,
Y.
,
Xu
,
J.
,
Elkhuizen
,
W. S.
, and
Song
,
Y.
,
2021
, “
The Development of a Low-Cost Photogrammetry-Based 3D Hand Scanner
,”
HardwareX
,
10
, p.
e00212
.
7.
Buckingham
,
G.
,
2021
, “
Hand Tracking for Immersive Virtual Reality: Opportunities and Challenges
,”
arXiv preprint
, https://arxiv.org/abs/2103.14853Accessed November 15, 2021.
8.
Hsiao
,
J. H.
,
Deng
,
Y. H.
,
Pao
,
T. Y.
,
Chou
,
H. R.
, and
Chang
,
J. Y.
,
2017
, “
Design of a Wireless 3d Hand Motion Tracking and Gesture Recognition Glove for Virtual Reality Applications
,”
Proceedings of ISPS
,
San Francisco, CA
,
Aug. 29–30
, ASME Paper No. ISPS2017-5450.
9.
Thakur
,
A.
, and
Rai
,
R.
, “
User Study of Hand Gestures for Gesture Based 3D CAD Modeling
,”
Proceedings of IDETC/CIE
,
Boston, MA
,
Aug. 2–5
, ASME Paper No. DETC2015-46086.
10.
Bullock
,
I. M.
,
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2013
, “
A Hand-Centric Classification of Human and Robot Dexterous Manipulation
,”
IEEE Trans. Haptics
,
6
(
2
), pp.
129
144
.
11.
Wang
,
J.
,
Barry
,
O.
,
Kurdila
,
A. J.
, and
Vijayan
,
S.
, “
On the Dynamics and Control of a Full Wrist Exoskeleton for Tremor Alleviation
,”
Dynamic Systems and Control Conference
,
Part City, UT
,
Oct. 8–11
.
12.
Ten Kate
,
J.
,
Smit
,
G.
, and
Breedveld
,
P.
,
2017
, “
3D-Printed Upper Limb Prostheses: A Review
,”
Disabil. Rehabil. Assist. Technol.
,
12
(
3
), pp.
300
314
.
13.
Hamilton
,
G. F.
, and
Lachenbruch
,
P. A.
,
1969
, “
Reliability of Goniometers in Assessing Finger Joint Angle
,”
Phys. Ther.
,
49
(
5
), pp.
465
469
.
14.
Reissner
,
L.
,
Fischer
,
G.
,
List
,
R.
,
Taylor
,
W. R.
,
Giovanoli
,
P.
, and
Calcagni
,
M.
,
2019
, “
Minimal Detectable Difference of the Finger and Wrist Range of Motion: Comparison of Goniometry and 3D Motion Analysis
,”
J. Orthop. Surg. Res.
,
14
(
1
), pp.
1
10
.
15.
Ellis
,
B.
, and
Bruton
,
A.
,
2002
, “
A Study to Compare the Reliability of Composite Finger Flexion With Goniometry for Measurement of Range of Motion in the Hand
,”
Clin. Rehabil.
,
16
(
5
), pp.
562
570
.
16.
Lewis
,
E.
,
Fors
,
L.
, and
Tharion
,
W. J.
,
2010
, “
Interrater and Intrarater Reliability of Finger Goniometric Measurements
,”
Am. J. Occup. Ther.
,
64
(
4
), pp.
555
561
.
17.
Erol
,
A.
,
Bebis
,
G.
,
Nicolescu
,
M.
,
Boyle
,
R. D.
, and
Twombly
,
X.
,
2007
, “
Vision-Based Hand Pose Estimation: A Review
,”
Comput. Vis. Image Understand.
,
108
(
1–2
), pp.
52
73
.
18.
Zhou
,
H.
, and
Hu
,
H.
,
2008
, “
Human Motion Tracking for Rehabilitation—A Survey
,”
Biomed. Signal Process. Control
,
3
(
1
), pp.
1
18
.
19.
Chen
,
W.
,
Yu
,
C.
,
Tu
,
C.
,
Lyu
,
Z.
,
Tang
,
J.
,
Ou
,
S.
,
Fu
,
Y.
, and
Xue
,
Z.
,
2020
, “
A Survey on Hand Pose Estimation With Wearable Sensors and Computer-Vision-Based Methods
,”
Sensors
,
20
(
4
), p.
1074
.
20.
Yang
,
H.
,
Shao
,
L.
,
Zheng
,
F.
,
Wang
,
L.
, and
Song
,
Z.
,
2011
, “
Recent Advances and Trends in Visual Tracking: A Review
,”
Neurocomputing
,
74
(
18
), pp.
3823
3831
.
21.
Connolly
,
J.
,
Condell
,
J.
,
O’Flynn
,
B.
,
Sanchez
,
J. T.
, and
Gardiner
,
P.
,
2017
, “
IMU Sensor-Based Electronic Goniometric Glove for Clinical Finger Movement Analysis
,”
IEEE Sens. J.
,
18
(
3
), pp.
1273
1281
.
22.
Salchow-Hömmen
,
C.
,
Callies
,
L.
,
Laidig
,
D.
,
Valtin
,
M.
,
Schauer
,
T.
, and
Seel
,
T.
,
2019
, “
A Tangible Solution for Hand Motion Tracking in Clinical Applications
,”
Sensors
,
19
(
1
), p.
208
.
23.
Lin
,
B. S.
,
Lee
,
I.
,
Yang
,
S. Y.
,
Lo
,
Y. C.
,
Lee
,
J.
, and
Chen
,
J. L.
,
2018
, “
Design of an Inertial-Sensor-Based Data Glove for Hand Function Evaluation
,”
Sensors
,
18
(
5
), p.
1545
.
24.
Baldi
,
T. L.
,
Mohammadi
,
M.
,
Scheggi
,
S.
, and
Prattichizzo
,
D.
,
2015
, “
Using Inertial and Magnetic Sensors for Hand Tracking and Rendering in Wearable Haptics
,”
Proceedings of IEEE World Haptics Conference (WHC)
,
IL
,
June 22–26
, pp.
381
387
.
25.
NDI
, “
3D Guidance Sensors—NDI
,” https://www.ndigital.com/products/3d-guidance/3d-guidance-sensors/, Accessed August 10, 2021.
26.
Saggio
,
G.
,
Riillo
,
F.
,
Sbernini
,
L.
, and
Quitadamo
,
L. R.
,
2015
, “
Resistive Flex Sensors: A Survey
,”
Smart Mater. Struct.
,
25
(
1
), p.
013001
.
27.
Michaud
,
H. O.
,
Dejace
,
L.
,
De Mulatier
,
S.
, and
Lacour
,
S. P.
, “
Design and Functional Evaluation of an Epidermal Strain Sensing System for Hand Tracking
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
3186
3191
.
28.
CyberGlove Systems LLC
, “
CyberGlove III—CyberGlove Systems LLC
,” http://www.cyberglovesystems.com/cyberglove-iii/, Accessed August 10, 2021.
29.
Jarque-Bou
,
N. J.
,
Atzori
,
M.
, and
Müller
,
H.
,
2020
, “
A Large Calibrated Database of Hand Movements and Grasps Kinematics
,”
Sci. Data
,
7
(
1
), pp.
1
10
.
30.
Fischer
,
G.
,
Jermann
,
D.
,
List
,
R.
,
Reissner
,
L.
, and
Calcagni
,
M.
,
2020
, “
Development and Application of a Motion Analysis Protocol for the Kinematic Evaluation of Basic and Functional Hand and Finger Movements Using Motion Capture in a Clinical Setting—A Repeatability Study
,”
Appl. Sci.
,
10
(
18
), p.
6436
.
31.
Coupier
,
J.
,
Hamoudi
,
S.
,
Telese-Izzi
,
S.
,
Feipel
,
V.
,
Rooze
,
M.
, and
Jan
,
S. V. S.
,
2016
, “
A Novel Method for In-Vivo Evaluation of Finger Kinematics Including Definition of Healthy Motion Patterns
,”
Clin. Biomech.
,
31
, pp.
47
58
.
32.
Garrido-Jurado
,
S.
,
Muñoz-Salinas
,
R.
,
Madrid-Cuevas
,
F. J.
, and
Marín-Jiménez
,
M. J.
,
2014
, “
Automatic Generation and Detection of Highly Reliable Fiducial Markers Under Occlusion
,”
Pattern Recognit.
,
47
(
6
), pp.
2280
2292
.
33.
Elangovan
,
N.
,
Dwivedi
,
A.
,
Gerez
,
L.
,
Chang
,
C. M.
, and
Liarokapis
,
M.
,
2019
, “
Employing imu and Aruco Marker Based Tracking to Decode the Contact Forces Exerted by Adaptive Hands
,”
Proceedings of IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)
,
Toronto, Canada
,
Oct. 15–17
, pp.
525
530
.
34.
Mueller
,
F.
,
Bernard
,
F.
,
Sotnychenko
,
O.
,
Mehta
,
D.
,
Sridhar
,
S.
,
Casas
,
D.
, and
Theobalt
,
C.
,
2018
, “
Ganerated Hands for Real-Time 3d Hand Tracking From Monocular rgb
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
49
59
.
35.
Yuan
,
S.
,
Ye
,
Q.
,
Stenger
,
B.
,
Jain
,
S.
, and
Kim
,
T. K.
,
2017
, “
Bighand2. 2m Benchmark: Hand Pose Dataset and State of the art Analysis
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
,
Honolulu, HI
,
July 21–26
, pp.
4866
4874
.
36.
Garcia-Hernando
,
G.
,
Yuan
,
S.
,
Baek
,
S.
, and
Kim
,
T. K.
,
2018
, “
First-Person Hand Action Benchmark With rgb-d Videos and 3d Hand Pose Annotations
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
409
419
.
37.
Huysmans
,
T.
, and
Molenbroek
,
J. F. M.
, “
DINED/Anthropometry in Design
,” https://dined.io.tudelft.nl/en, Accessed August 10, 2021.
38.
Oberkampf
,
D.
,
DeMenthon
,
D. F.
, and
Davis
,
L. S.
,
1996
, “
Iterative Pose Estimation Using Coplanar Feature Points
,”
Comput. Vis. Image Understand.
,
63
(
3
), pp.
495
511
.
39.
Cooney
,
W. P.
, III
, and
Chao
,
E. Y.
,
1977
, “
Biomechanical Analysis of Static Forces in the Thumb During Hand Function
,”
J. Bone Jt. Surg.
American Volume,
59
(
1
), pp.
27
36
.
40.
Chao
,
E. Y. S.
,
An
,
K.-N.
,
Cooney
,
W. P.
, and
Linscheid
,
R. L.
,
1989
,
Biomechanics of the Hand
,
Y. S.
Cappo
, ed.,
World Scientific
,
Singapore
, pp.
73
96
.
41.
Wu
,
G.
,
Van der Helm
,
F. C.
,
Veeger
,
H. D.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
, et al
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.
42.
McGinley
,
J. L.
,
Baker
,
R.
,
Wolfe
,
R.
, and
Morris
,
M. E.
,
2009
, “
The Reliability of Three-Dimensional Kinematic Gait Measurements: A Systematic Review
,”
Gait Posture
,
29
(
3
), pp.
360
369
.
43.
Cheng
,
P. L.
, and
Pearcy
,
M.
,
1999
, “
A Three-Dimensional Definition for the Flexion/Extension and Abduction/Adduction Angles
,”
Med. Biol. Eng. Comput.
,
37
(
4
), pp.
440
444
.
44.
Bain
,
G. I.
,
Polites
,
N.
,
Higgs
,
B. G.
,
Heptinstall
,
R. J.
, and
McGrath
,
A. M.
,
2015
, “
The Functional Range of Motion of the Finger Joints
,”
J. Hand Surg.
(European Volume),
40
(
4
), pp.
406
411
.
45.
Mueller
,
F.
,
Mehta
,
D.
,
Sotnychenko
,
O.
,
Sridhar
,
S.
,
Casas
,
D.
, and
Theobalt
,
C.
,
2017
, “
Real-Time Hand Tracking Under Occlusion From an Egocentric rgb-d Sensor
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Venice, Italy
,
Oct. 22–29
, pp.
1154
1163
.
You do not currently have access to this content.