Abstract

Product visualization in AR/VR applications requires a largely manual process of data preparation. Previous publications focus on error-free triangulation or transformation of product structure data and display attributes for AR/VR applications. This paper focuses on the preparation of the required geometry data. In this context, a significant reduction in effort can be achieved through automation. The steps of geometry preparation are identified and examined concerning their automation potential. In addition, possible couplings of sub-steps are discussed. Based on these explanations, a structure for the geometry preparation process is proposed. With this structured preparation process, it becomes possible to consider the available computing power of the target platform during the geometry preparation. The number of objects to be rendered, the tessellation quality, and the level of detail (LOD) can be controlled by the automated choice of transformation parameters. Through this approach, tedious preparation tasks and iterative performance optimization can be avoided in the future, which also simplifies the integration of AR/VR applications into product development and use. A software tool is presented in which partial steps of the automatic preparation are already implemented. After an analysis of the product structure of a CAD file, the transformation is executed for each component. Functions implemented so far allow, for example, the selection of assemblies and parts based on filter options, the transformation of geometries in batch mode, the removal of certain details, and the creation of UV maps. Flexibility, transformation quality, and timesavings are described and discussed.

References

1.
Dammann
,
M. P.
,
Steger
,
W.
, and
Stelzer
,
R.
,
2021
, “
Automated and Adaptive Geometry Preparation for AR/VR-Applications
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 41st Computers and Information in Engineering Conference (CIE)
,
Virtual, Online
,
Aug. 17–19
.
2.
Berg
,
L. P.
, and
Vance
,
J. M.
,
2017
, “
An Industry Case Study: Investigating Early Design Decision Making in Virtual Reality
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
1
), p. 011001.
3.
Vélaz
,
Y.
,
Rodríguez Arce
,
J.
,
Gutiérrez
,
T.
,
Lozano-Rodero
,
A.
, and
Suescun
,
A.
,
2014
, “
The Influence of Interaction Technology on the Learning of Assembly Tasks Using Virtual Reality
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
4
), p. 041007.
4.
Perticarini
,
M.
,
Callegaro
,
C.
,
Carraro
,
F.
, and
Mazzariol
,
A.
,
2019
, “
Two Methods of Optimization for an AR Project: Mesh Retopology and Use of PBR Materials
,”
International and Interdisciplinary Conference on Image and Imagination
,
Alghero
,
July 4–5
, pp.
1008
1015
.
5.
Li
,
L.
,
Qiao
,
X.
,
Lu
,
Q.
,
Ren
,
P.
, and
Lin
,
R.
,
2020
, “
Rendering Optimization for Mobile Web 3D Based on Animation Data Separation and On-Demand Loading
,”
IEEE Access
,
8
(
1
), pp.
88474
88486
.
6.
Han
,
Y.-S.
,
Lee
,
J.
,
Lee
,
J.
,
Lee
,
W.
, and
Lee
,
K.
,
2019
, “
3D CAD Data Extraction and Conversion for Application of Augmented/Virtual Reality to the Construction of Ships and Offshore Structures
,”
Int. J. Comput. Integr. Manuf.
,
32
(
7
), pp.
658
668
.
7.
Freeman
,
I. J.
,
Salmon
,
J. L.
, and
Coburn
,
J. Q.
,
2016
, “
CAD Integration
in
Virtual Reality Design Reviews for Improved Engineering Model Interaction
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition—2016
,
Phoenix, AZ
,
Nov. 11–17
.
8.
Bellalouna
,
F.
,
2020
, “
Industrial Case Studies for Digital Transformation of Engineering Processes Using the Virtual Reality Technology
,”
Procedia CIRP
,
90
(
4
), pp.
636
641
.
9.
Lorenz
,
M.
,
Spranger
,
M.
,
Riedel
,
T.
,
Pürzel
,
F.
,
Wittstock
,
V.
, and
Klimant
,
P.
,
2016
, “
CAD to VR—A Methodology for the Automated Conversion of Kinematic CAD Models to Virtual Reality
,”
Procedia CIRP
,
41
(
3
), pp.
358
363
.
10.
Gebert
,
M.
,
Steger
,
W.
, and
Stelzer
,
R.
,
2018
, “
Fast and Flexible Visualization Using an Enhanced Scene Graph
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec, Canada
,
Aug. 26–29
, ASME, p. V01BT02A025.
11.
Stelzer
,
R.
,
Steger
,
W.
, and
Petermann
,
D.
,
2015
, “
The VR Session Manager: A Tool to Co-Ordinate a Collaborative Product Development Process in a Virtual Environment
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference—2012
,
Chicago, IL
,
Aug. 12–15
, pp.
1517
1525
.
12.
Mesing
,
B.
, and
Lukas
,
U. v.
,
2014
, “
Authoring of Automatic Data Preparation and Scene Enrichment for Maritime Virtual Reality Applications
,”
Virtual, Augmented and Mixed Reality: 6th International Conference, VAMR 2014, Held as Part of HCI International 2014
,
Cham
,
Heraklion, Crete, Greece
,
June 22–27
, pp.
426
434
.
13.
Schilling
,
A.
,
Kim
,
S.
,
Weissmann
,
D.
,
Tang
,
Z.
, and
Choi
,
S.
,
2006
, “
CAD-VR Geometry and Meta Data Synchronization for Design Review Applications
,”
J. Zhejiang Univ., Sci., A
,
7
(
9
), pp.
1482
1491
.
14.
Santos
,
B.
,
Rodrigues
,
N.
,
Costa
,
P.
, and
Coelho
,
A.
,
2021
, “
Integration of CAD Models Into Game Engines
,”
VISIGRAPP 2021–16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
15.
Tang
,
Y.
, and
Gu
,
H.
,
2010
, “
CAD Model's Simplification and Conversion for Virtual Reality
,”
2010 Third International Conference on Information and Computing
,
IEEE
,
Wuxi, TBD, China
,
June 4–6
, pp.
265
268
.
16.
Abidi
,
M. H.
,
Al-Ahmari
,
A.
, and
Ahmad
,
A.
,
2018
, “
A Systematic Approach to Parameter Selection for CAD-Virtual Reality Data Translation Using Response Surface Methodology and MOGA-II
,”
PLoS One
,
13
(
5
), p.
e0197673
.
17.
Web3D Consortium
,
2021
, “
What is X3D? | Web3D Consortium
.” https://www.web3d.org/x3d/what-x3d, Accessed December 15, 2021.
18.
Web3D Consortium
,
2021
, “
X3D & VRML, The Most Widely Used 3D Formats | Web3D Consortium
.” https://www.web3d.org/x3d-vrml-most-widely-used-3d-formats, Accessed December 15, 2021.
19.
The Khronos Group Inc.
,
2021
, “
glTF -
.” https://www.khronos.org, Accessed December 15, 2021.
20.
Siemens
,
2021
, “
JT | Siemens Digital Industries Software
.” https://www.plm.automation.siemens.com/global/de/products/plm-components/jt.html, Accessed December 15, 2021.
21.
Laug
,
P.
, and
Borouchaki
,
H.
,
2012
, “
High Quality Geometric Meshing
,”
Proceedings of the 20th International Meshing Roundtable
,
Paris, France
,
Oct. 23–26, 2011
, pp.
63
80
.
22.
Guo
,
J.
,
Ding
,
F.
,
Jia
,
X.
, and
Yan
,
D.-M.
,
2019
, “
Automatic and High-Quality Surface Mesh Generation for CAD Models
,”
Comput.-Aided Des.
,
109
(
4
), pp.
49
59
.
23.
Nguyen
,
H.
,
Burkardt
,
J.
,
Gunzburger
,
M.
,
Ju
,
L.
, and
Saka
,
Y.
,
2009
, “
Constrained CVT Meshes and a Comparison of Triangular Mesh Generators
,”
Comput. Geom.
,
42
(
1
), pp.
1
19
.
24.
Unity Technologies
,
2021
, “
Unity—Manual: 3D formats
.” https://docs.unity3d.com/Manual/3D-formats.html, Accessed December 15, 2021.
25.
Epic Games Inc.
,
2021
, “
Unreal Engine | Datasmith
.” https://www.unrealengine.com/en-US/datasmith?sessionInvalidated=true, Accessed December 15, 2021.
26.
PiXYZ Software
,
2021
, “
Pixyz | Get your 3D data ready for new experiences
.” https://www.pixyz-software.com/, Accessed December 15, 2021.
27.
Lee
,
J.
, and
Kuo
,
C.-C. J.
,
2010
, “
Tree Model Simplification with Hybrid Polygon/Billboard Approach and Human-Centered Quality Evaluation
,”
2010 IEEE International Conference on Multimedia and Expo: (ICME 2010)
,
Singapore
,
July 19–23
, pp.
932
937
.
28.
Open Cascade
,
2021
, “
CAD Processor—Open Cascade
.” https://www.opencascade.com/products/cad-processor/, Accessed December 15, 2021.
29.
Graf
,
H.
,
Brunetti
,
G.
, and
Stork
,
A.
,
2002
, “
A Methodology Supporting the Preparation of 3D-CAD Data for Design Reviews in VR
,”
DS 30: Proceedings of DESIGN 2002, the 7th International Design Conference
,
Dubrovnik, Croatia
,
May 14–17
, pp.
489
496
.
30.
Balzerkiewitz
,
H.-P.
, and
Stechert
,
C.
,
2020
, “
The Evolution of Virtual Reality Towards the Usage in Early Design Phases
,”
Proceedings of the Design Society: DESIGN Conference
,
Cavtat, Croatia
,
Oct. 26–29
, Vol. 1, pp.
91
100
.
31.
Salonen
,
T.
,
Sääski
,
J.
,
Woodward
,
C.
,
Korkalo
,
O.
,
Marstio
,
I.
, and
Rainio
,
K.
,
2009
, “
Data Pipeline From CAD to AR Based Assembly Instructions
,”
Proceedings of the ASME/AFM World Conference on Innovative Virtual Reality
,
Chalon-sur-Saône, France
,
Feb. 25–26
, pp.
165
168
.
32.
Lear
,
J.
,
Scarle
,
S.
, and
McClatchey
,
R.
,
2019
, “
Asset Pipeline Patterns: Patterns in Interactive Real-Time Visualization Workflow
,”
Proceedings of the 24th European Conference on Pattern Languages of Programs
,
Irsee, Germany
,
July 3–7
, pp.
1
11
.
33.
Joshi
,
N.
, and
Dutta
,
D.
,
2003
, “
Feature Simplification Techniques for Freeform Surface Models
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
3
), pp.
177
186
.
34.
Slyadnev
,
S. E.
, and
Turlapov
,
V. E.
,
2020
, “
Simplification of CAD Models by Automatic Recognition and Suppression of Blend Chains
,”
Program. Comput. Software
,
46
(
3
), pp.
233
243
.
35.
Li
,
J.
,
Tong
,
G.
,
Shi
,
D.
,
Geng
,
M.
,
Zhu
,
H.
, and
Hagiwara
,
I.
,
2009
, “
Automatic Small Blend Recognition From B-rep Models for Analysis
,”
Eng. Comput.
,
25
(
3
), pp.
279
285
.
36.
Kwon
,
S.
,
Lee
,
H.
, and
Mun
,
D.
,
2020
, “
Semantics-Aware Adaptive Simplification for Lightweighting Diverse 3D CAD Models in Industrial Plants
,”
J. Mech. Sci. Technol.
,
34
(
3
), pp.
1289
1300
.
37.
Qian
,
K.
,
Li
,
Y.
,
Su
,
K.
, and
Zhang
,
J.
,
2018
, “
A Measure-Driven Method for Normal Mapping and Normal map Design of 3D Models
,”
Multimed. Tools. Appl.
,
77
(
24
), pp.
31969
31989
.
38.
Merlo
,
A.
,
Sánchez Belenguer
,
C.
,
Vendrell Vidal
,
E.
,
Fantini
,
F.
, and
Aliperta
,
A.
,
2013
, “
3D Model Visualization Enhancements in Real-Time Game Engines
,”
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
,
XL-5/W1
(
1
), pp.
181
188
.
39.
Webster
,
N. L.
,
2017
, “
High Poly to low Poly Workflows for Real-Time Rendering
,”
J. Vis. Commun. Med.
,
40
(
1
), pp.
40
47
.
40.
The Blender Foundation
, “Mapping Types—Blender Manual.” https://docs.blender.org/manual/en/2.79/editors/uv_image/uv/editing/unwrapping/mapping_types.html, Accessed December 15, 2021.
41.
The FreeCAD Team
, “
FreeCAD: Your own 3D parametric modeler
.” https://www.freecadweb.org, Accessed December 15, 2021.
42.
Johnson
,
M. D.
,
Valverde
,
L. M.
, and
Thomison
,
W. D.
,
2018
, “
An Investigation and Evaluation of Computer-Aided Design Model Complexity Metrics
,”
Comput.-Aided Des. Appl.
,
15
(
1
), pp.
61
75
.
43.
Sukumar
,
S.
,
Page
,
D.
,
Gribok
,
A.
,
Koschan
,
A.
, and
Abidi
,
M.
,
2006
, “
Shape Measure for Identifying Perceptually Informative Parts of 3D Objects
,”
Third International Symposium on 3D Data Processing, Visualization, and Transmission
,
Chapel Hill, NC
,
June 14–16
, IEEE, pp.
679
686
.
44.
Sukumar
,
S. R.
,
Page
,
D. L.
,
Koschan
,
A. F.
, and
Abidi
,
M. A.
,
2008
, “
Towards Understanding What Makes 3D Objects Appear Simple or Complex
,”
2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
,
Anchorage, AK
,
June 23–28
, pp.
1
8
.
You do not currently have access to this content.