Abstract

With the dynamic arrival of production orders and unforeseen changes in shop-floor conditions within a production system, production scheduling presents a challenge for manufacturing firms to ensure production demands are met with high productivity and low operating cost. Before a production schedule is generated to process the incoming production orders, production planning is performed. Given the large number of input parameters involved in the production planning, it poses the challenge on how to systematically and accurately predict and evaluate production performance. Hence, it is important to understand the interactions of the input parameters between the production planning and the scheduling. This is to ensure that the production planning and the scheduling are coordinated and can be performed to achieve optimal production performance such as minimizing cost effectively and efficiently. Digital twin presents an opportunity to mirror the real-time production status and analyze the input parameters affecting the production performance in smart manufacturing. In this paper, we propose an approach to develop a surrogate model to predict the production performance using input parameters from a production plan using the capabilities of real-time synchronization of production data in digital twin. Multivariate adaptive regression spline (MARS) is applied to construct a surrogate model based on three categories of input parameters, i.e., current production system load, machine-based and product-based parameters. An industrial case study involving a wafer fabrication production is used to develop the surrogate model based on a random sampling of varying numbers of training data set. The proposed MARS model shows a high correlation coefficient and a large reduction in the number of input parameters for both linear and nonlinear cases with relation to three performances, namely flowtime, tardiness, and machine utilization.

References

1.
Bang
,
J.-Y.
, and
Kim
,
Y.-D.
,
2010
, “
Hierarchical Production Planning for Semiconductor Wafer Fabrication Based on Linear Programming and Discrete-Event Simulation
,”
IEEE Trans. Autom. Sci. Eng.
,
7
(
2
), pp.
326
336
.
2.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J. H.
,
2001
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
,
Springer
,
New York
.
3.
Jin
,
Y.
,
2005
, “
A Comprehensive Survey of Fitness Approximation in Evolutionary Computation
,”
Soft Comput.
,
9
(
1
), pp.
3
12
.
4.
Chang
,
L.-Y.
,
2014
, “
Analysis of Bilateral Air Passenger Flows: A Non-parametric Multivariate Adaptive Regression Spline Approach
,”
J. Air Transp. Manage.
,
34
, pp.
123
130
.
5.
Kulvatunyou
,
B.
,
Ivezic
,
N.
, and
Srinivasan
,
V.
,
2016
, “
On Architecting and Composing Engineering Information Services to Enable Smart Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
3
), p.
031002
.
6.
Germany
,
A.
,
2013
, “
Securing the Future of German Manufacturing Industry Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0
,” acatech German.
7.
Tuptuk
,
N.
, and
Hailes
,
S.
,
2018
, “
Security of Smart Manufacturing Systems
,”
J. Manuf. Syst.
,
47
, pp.
93
106
.
8.
Feng
,
S. C.
,
Bernstein
,
W. Z.
,
Hedberg
,
T.
, Jr.
, and
Feeney
,
A. B.
,
2017
, “
Toward Knowledge Management for Smart Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031016
.
9.
Hedberg
,
T. D.
, Jr.
,
Bajaj
,
M.
, and
Camelio
,
J. A.
,
2020
, “
Using Graphs to Link Data Across the Product Lifecycle for Enabling Smart Manufacturing Digital Threads
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011011
.
10.
NIST
,
2014
, “
Smart Manufacturing Operations Planning and Control Program
,” https://www.nist.gov/programs-projects/smart-manufacturing-operations-planning-and-control-program, Last modified January 28, 2021, Accessed June 26, 2021.
11.
Kusiak
,
A.
,
2018
, “
Smart Manufacturing
,”
Int. J. Prod. Res.
,
56
(
1–2
), pp.
508
517
.
12.
Monostori
,
L.
,
2014
, “
Cyber-Physical Production Systems: Roots, Expectations and R&D Challenges
,”
Procedia CIRP
,
17
, pp.
9
13
.
13.
Glaessgen
,
E.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, pp.
1
14
.
14.
He
,
B.
,
Liu
,
L.
, and
Zhang
,
D.
,
2021
, “
Digital Twin-Driven Remaining Useful Life Prediction for Gear Performance Degradation: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
030801
.
15.
Boschert
,
S.
, and
Rosen
,
R.
,
2016
, “Digital Twin—The Simulation Aspect,”
Mechatronic Futures
,
P.
Hehenberger
, and
D.
Bradley
, eds.,
Springer
,
Cham
, pp.
59
74
.
16.
Gao
,
Y.
,
Li
,
X.
, and
Gao
,
L.
,
2021
, “
A Deep Lifelong Learning Method for Digital Twin-Driven Defect Recognition With Novel Classes
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031004
.
17.
Cai
,
H.
,
Zhu
,
J.
, and
Zhang
,
W.
,
2021
, “
Quality Deviation Control for Aircraft Using Digital Twin
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031008
.
18.
Guo
,
J.
,
Yang
,
Z.
,
Chen
,
C.
,
Luo
,
W.
, and
Hu
,
W.
,
2021
, “
Real-Time Prediction of Remaining Useful Life and Preventive Maintenance Strategy Based on Digital Twin
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031003
.
19.
Aderiani
,
A. R.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2019
, “
Individualizing Locator Adjustments of Assembly Fixtures Using a Digital Twin
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041019
.
20.
Tao
,
F.
,
Zuo
,
Y.
,
Xu
,
L. D.
, and
Zhang
,
L.
,
2014
, “
IoT-Based Intelligent Perception and Access of Manufacturing Resource Toward Cloud Manufacturing
,”
IEEE Trans. Industr. Inform.
,
10
(
2
), pp.
1547
1557
.
21.
Ante
,
G.
,
Facchini
,
F.
,
Mossa
,
G.
, and
Digiesi
,
S.
,
2018
, “
Developing a key Performance Indicators Tree for Lean and Smart Production Systems
,”
IFAC-PapersOnLine
,
51
(
11
), pp.
13
18
.
22.
Yan
,
D.
,
Liu
,
Q.
,
Leng
,
J.
,
Zhang
,
D.
,
Zhao
,
R.
,
Zhang
,
H.
, and
Wei
,
L.
,
2021
, “
Digital Twin-Driven Rapid Customized Design of Board-Type Furniture Production Line
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031011
.
23.
Kumaraguru
,
S.
,
Kulvatunyou
,
B.
, and
Morris
,
K. C.
,
2014
, “Integrating Real-Time Analytics and Continuous Performance Management in Smart Manufacturing Systems,”
APMS 2014: Advances in Production Management Systems. Innovative and Knowledge-Based Production Management in a Global-Local World
, Vol.
440
,
B.
Grabot
, et al
ed.,
Springer
,
Ajaccio, France
, pp.
175
182
.
24.
Ilsen
,
R.
,
Meissner
,
H.
, and
Aurich
,
J. C.
,
2017
, “
Optimizing Energy Consumption in a Decentralized Manufacturing System
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021006
.
25.
Wang
,
F.
,
Lu
,
Y.
, and
Ju
,
F.
,
2018
, “
Condition-Based Real-Time Production Control for Smart Manufacturing Systems
,”
2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)
,
Munich, Germany
,
Aug. 20–24
, pp.
1052
1057
.
26.
Chiu
,
M.-C.
,
Tsai
,
C.-D.
, and
Li
,
T.-L.
,
2020
, “
An Integrative Machine Learning Method to Improve Fault Detection and Productivity Performance in a Cyber-Physical System
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021009
.
27.
Hung
,
C.-Y.
, and
Cheng
,
C.-Y.
,
2018
, “
The Research of Hidden Markov Models for Overall Equipment Effectiveness Analysis in Smart Manufacturing System
,”
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society
,”
Phuket
,
July 4-7
.
28.
Dubois
,
D.
, and
Prade
,
H.
,
1985
, “
Fuzzy Cardinality and the Modeling of Imprecise Quantification
,”
Fuzzy Sets Syst.
,
16
(
3
), pp.
199
230
.
29.
Zareipour
,
H.
,
Bhattacharya
,
K.
, and
Cañizares
,
C. A.
,
2006
, “
Forecasting the Hourly Ontario Energy Price by Multivariate Adaptive Regression Splines
,”
2006 IEEE Power Engineering Society General Meeting
,
Montreal, QC
,
June 18–22
, p.
7
.
30.
Leathwick
,
J. R.
,
Elith
,
J.
, and
Hastie
,
T.
,
2006
, “
Comparative Performance of Generalized Additive Models and Multivariate Adaptive Regression Splines for Statistical Modelling of Species Distributions
,”
Ecol. Modell.
,
199
(
2
), pp.
188
196
.
31.
Geridönmez
,
B. P.
,
2020
, “
A New Regression-Based Approach to Estimate the Shape Parameter of MQ-RBFs in a Free Convection Problem
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011009
.
32.
Özuysal
,
M.
, and
Çalişkanelli˙
,
S. P.
,
2018
, “
Reliability Estimation of Public Bus Routes: Applicability of Multivariate Adaptive Regression Splines Approach
,”
Can. J. Civil. Eng.
,
45
(
10
), pp.
852
865
.
33.
Zhang
,
Z.
,
Shi
,
J.
,
Yu
,
T.
,
Santomauro
,
A.
,
Gordon
,
A.
,
Gou
,
J.
, and
Wu
,
D.
,
2020
, “
Predicting Flexural Strength of Additively Manufactured Continuous Carbon Fiber-Reinforced Polymer Composites Using Machine Learning
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061015
.
34.
Goh
,
A. T. C.
,
Zhang
,
W.
,
Zhang
,
Y.
,
Xiao
,
Y.
, and
Xiang
,
Y.
,
2018
, “
Determination of Earth Pressure Balance Tunnel-Related Maximum Surface Settlement: A Multivariate Adaptive Regression Splines Approach
,”
Bull. Eng. Geol. Environ.
,
77
(
2
), pp.
489
500
.
35.
Liu
,
T.
,
2018
, “Multivariate Adaptive Regression Splines in Standard Cell Characterization for Nanometer Technology in Semiconductor,”
Topics in Splines and Applications
, Vol.
3
,
Y. K.
Truong
, and
M.
Sarfraz
, eds.,
IntechOpen
,
London
, pp.
47
62
.
36.
Zhang
,
W. G.
, and
Goh
,
A. T. C.
,
2013
, “
Multivariate Adaptive Regression Splines for Analysis of Geotechnical Engineering Systems
,”
Comput. Geotech.
,
48
, pp.
82
95
.
37.
Milborrow
,
S.
,
2020
, “
Package ‘earth’
.” https://cran.r-project.org/web/packages/earth/earth.pdf
38.
El-Bouri
,
A.
, and
Shah
,
P.
,
2006
, “
A Neural Network for Dispatching Rule Selection in a Job Shop
,”
Int. J. Adv. Manuf. Technol.
,
31
(
3–4
), pp.
342
349
.
39.
Wang
,
C.-N.
, and
Wang
,
C.-H.
,
2007
, “
A Simulated Model for Cycle Time Reduction by Acquiring Optimal Lot Size in Semiconductor Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
34
(
9–10
), pp.
1008
1015
.
40.
Koike
,
A.
, and
Tsunematsu
,
M.
,
1995
, “
Trends in Semiconductor Device Production Lines and Processing Equipment
,”
Hitachi Rev.
,
44
(
2
), pp.
71
78
.
41.
Tu
,
Y.-M.
, and
Lu
,
C.-W.
,
2017
, “
The Influence of Lot Size on Production Performance in Wafer Fabrication Based on Simulation
,”
Procedia Eng.
,
174
, pp.
135
144
.
42.
Altendorfer
,
K.
,
Kabelka
,
B.
, and
Stocher
,
W.
,
2007
, “
A New Dispatching Rule for Optimizing Machine Utilization at a Semiconductor Test Field
,”
2007 IEEE/SEMI Advanced Semiconductor Manufacturing Conference
,
Stresa, Italy
,
June 11–12
, pp.
188
193
.
43.
Ehteshami
,
B.
,
Pétrakian
,
R. G.
, and
Shabe
,
P. M.
,
1992
, “
Trade-Offs in Cycle Time Management: Hot Lots
,”
IEEE Trans. Semicond. Manuf.
,
5
(
2
), pp.
101
106
.
44.
Boehmke
,
B.
, and
Greenwell
,
B.
,
2020
,
Hands-On Machine Learning With R
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
45.
Appleby
,
A.
,
2016
, “
Smhasher and murmurhash3 webpage
,” https://github.com/aappleby/smhasher, Last modified January 9, 2016, Accessed July 5, 2021.
46.
Zhang
,
W.
,
Wu
,
C.
,
Li
,
Y.
,
Wang
,
L.
, and
Samui
,
P.
,
2019
, “
Assessment of Pile Drivability Using Random Forest Regression and Multivariate Adaptive Regression Splines
,”
Georisk: Assess. Manage. Risk Eng. Syst. Geohazards
,
15
(
1
), pp.
27
40
.
47.
Milborrow
,
S.
,
2021
, “
Notes on the Earth Package
,” http://www.milbo.org/doc/earth-notes.pdf
You do not currently have access to this content.