Abstract

Topological tailoring of materials at a micro-scale can achieve a diverse range of exotic physical and mechanical properties that are not usually found in nature. Modification of material properties through customizing the structural pattern paves an avenue for novel functional products design. This paper explores a non-periodic microstructure design framework for functional parts design with high-strength and lightweight requirements. To address the geometric frustration problem commonly found in non-periodic microstructure designing, we employ a smooth transition layer to connect distinct structural patterns and thus achieve functional gradation among adjacent microstructures. The concept of spatial control points is introduced for the interpolation of this transition layer. To achieve a high-strength macro-structural performance for designing functional parts, we formulate the control points as the design variables and encapsulate them into a macro-structural design optimization problem. Given that our objective function involves expensive finite element (FE) simulations, a Bayesian optimization scheme is exploited to address the computational challenge brought by the FE simulation. Experimental results demonstrate that the proposed design framework can yield both functionally graded lightweight structures and high-strength macro-mechanical performance for the designing parts. The compatibility issue of non-periodic microstructure design is well addressed. Comparative studies reveal that the proposed framework is robust and can achieve superior mechanical performance to design functional parts with spatially varying properties.

References

1.
Schaedler
,
T. A.
, and
Carter
,
W. B.
,
2016
, “
Architected Cellular Materials
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
187
210
.
2.
Tong
,
X. C.
,
2018
,
Functional Metamaterials and Metadevices
,
Springer
,
New York
.
3.
Steuben
,
J. C.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2018
, “
Multiscale Topology Optimization for Additively Manufactured Objects
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
3
), p. 031002.
4.
Zhang
,
B.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Nelaturi
,
S.
,
2018
, “
Additive Manufacturing of Functionally Graded Material Objects: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p. 041002.
5.
Garner
,
E.
,
Kolken
,
H. M.
,
Wang
,
C. C.
,
Zadora
,
A.
, and
Wu
,
J.
,
2019
, “
Compatibility in Microstructural Optimization for Additive Manufacturing
,”
Addit. Manuf.
,
26
, pp.
65
75
.
6.
Xiong
,
J.
,
Mines
,
R.
,
Ghosh
,
R.
,
Vaziri
,
A.
,
Ma
,
L.
,
Ohrndorf
,
A.
,
Christ
,
H.-J.
, and
Wu
,
L.
,
2015
, “
Advanced Micro-lattice Materials
,”
Adv. Eng. Mater.
,
17
(
9
), pp.
1253
1264
.
7.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
Van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), pp.
1
11
.
8.
Barchiesi
,
E.
,
Spagnuolo
,
M.
, and
Placidi
,
L.
,
2019
, “
Mechanical Metamaterials: A State of the Art
,”
Math. Mech. Solids
,
24
(
1
), pp.
212
234
.
9.
Tan
,
J. H. K.
,
Sing
,
S. L.
, and
Yeong
,
W. Y.
,
2020
, “
Microstructure Modelling for Metallic Additive Manufacturing: A Review
,”
Virtual Phys. Prototyp.
,
15
(
1
), pp.
87
105
.
10.
Schumacher
,
C.
,
Bickel
,
B.
,
Rys
,
J.
,
Marschner
,
S.
,
Daraio
,
C.
, and
Gross
,
M.
,
2015
, “
Microstructures to Control Elasticity in 3d Printing
,”
ACM Trans. Graph.
,
34
(
4
), pp.
1
13
.
11.
Rosen
,
D. W.
,
2014
, “
Multiscale, Heterogeneous Computer Aided Design Representation for Metal Alloy Microstructures
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
4
), p. 041003.
12.
Liu
,
X.
, and
Shapiro
,
V.
,
2017
, “
Sample-Based Synthesis of Functionally Graded Material Structures
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p. 031012.
13.
Wang
,
J.
, and
Rai
,
R.
,
2020
, “
Generative Design of Conformal Cubic Periodic Cellular Structures Using a Surrogate Model-Based Optimisation Scheme
,”
Int. J. Prod. Res.
, pp.
1
20
.
14.
Huang
,
W.
,
Wang
,
Y.
, and
Rosen
,
D. W.
,
2017
, “
A Multiscale Materials Modeling Method With Seamless Zooming Capability Based on Surfacelets
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p. 021007.
15.
Martínez
,
J.
,
Song
,
H.
,
Dumas
,
J.
, and
Lefebvre
,
S.
,
2017
, “
Orthotropic k-Nearest Foams for Additive Manufacturing
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
12
.
16.
Martínez
,
J.
,
Hornus
,
S.
,
Song
,
H.
, and
Lefebvre
,
S.
,
2018
, “
Polyhedral Voronoi Diagrams for Additive Manufacturing
,”
ACM Trans. Graph.
,
37
(
4
), pp.
1
15
.
17.
Martínez
,
J.
,
Dumas
,
J.
, and
Lefebvre
,
S.
,
2016
, “
Procedural Voronoi Foams for Additive Manufacturing
,”
ACM Trans. Graph.
,
35
(
4
), pp.
1
12
.
18.
Han
,
S. C.
,
Choi
,
J. M.
,
Liu
,
G.
, and
Kang
,
K.
,
2017
, “
A Microscopic Shell Structure with Schwarz’s D-Surface
,”
Sci. Rep.
,
7
(
1
), pp.
1
8
.
19.
Hsieh
,
M. T.
,
Endo
,
B.
,
Zhang
,
Y.
,
Bauer
,
J.
, and
Valdevit
,
L.
,
2019
, “
The Mechanical Response of Cellular Materials With Spinodal Topologies
,”
J. Mech. Phys. Solids
,
125
, pp.
401
419
.
20.
Gross
,
A.
,
Pantidis
,
P.
,
Bertoldi
,
K.
, and
Gerasimidis
,
S.
,
2019
, “
Correlation Between Topology and Elastic Properties of Imperfect Truss-Lattice Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
577
598
.
21.
Kumar
,
S.
,
Tan
,
S.
,
Zheng
,
L.
, and
Kochmann
,
D. M.
,
2020
, “
Inverse-Designed Spinodoid Metamaterials
,”
npj Comput. Mater.
,
6
(
1
), pp.
1
10
.
22.
Wang
,
J.
,
Callanan
,
J.
,
Ogunbodede
,
O.
, and
Rai
,
R.
,
2021
, “
Hierarchical Combinatorial Design and Optimization of Non-periodic Metamaterial Structures
,”
Addit. Manuf.
,
37
, p.
101710
.
23.
Leung
,
Y. S.
,
Kwok
,
T. H.
,
Li
,
X.
,
Yang
,
Y.
,
Wang
,
C. C.
, and
Chen
,
Y.
,
2019
, “
Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021013
.
24.
Wang
,
J.
, and
Huang
,
J.
,
2021
, “
Functionally Graded Non-periodic Cellular Structure Design Using a Surrogate Model-Based Optimization Scheme
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
.
25.
Martínez
,
J.
,
Skouras
,
M.
,
Schumacher
,
C.
,
Hornus
,
S.
,
Lefebvre
,
S.
, and
Thomaszewski
,
B.
,
2019
, “
Star-Shaped Metrics for Mechanical Metamaterial Design
,”
ACM Trans. Graph.
,
38
(
4
), pp.
1
13
.
26.
Kolken
,
H. M.
, and
Zadpoor
,
A. A.
,
2017
, “
Auxetic Mechanical Metamaterials
,”
RSC Adv.
,
7
(
9
), pp.
5111
5129
.
27.
Babaee
,
S.
,
Shim
,
J.
,
Weaver
,
J. C.
,
Chen
,
E. R.
,
Patel
,
N.
, and
Bertoldi
,
K.
,
2013
, “
3D Soft Metamaterials With Negative Poisson's Ratio
,”
Adv. Mater.
,
25
(
36
), pp.
5044
5049
.
28.
Andreassen
,
E.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2014
, “
Design of Manufacturable 3D Extremal Elastic Microstructure
,”
Mech. Mater.
,
69
(
1
), pp.
1
10
.
29.
Sigmund
,
O.
,
1994
, “
Materials With Prescribed Constitutive Parameters: An Inverse Homogenization Problem
,”
Int. J. Solids Struct.
,
31
(
17
), pp.
2313
2329
.
30.
Pasko
,
A.
,
Fryazinov
,
O.
,
Vilbrandt
,
T.
,
Fayolle
,
P. A.
, and
Adzhiev
,
V.
,
2011
, “
Procedural Function-Based Modelling of Volumetric Microstructures
,”
Graph. Models
,
73
(
5
), pp.
165
181
.
31.
Robbins
,
J.
,
Owen
,
S. J.
,
Clark
,
B. W.
, and
Voth
,
T. E.
,
2016
, “
An Efficient and Scalable Approach for Generating Topologically Optimized Cellular Structures for Additive Manufacturing
,”
Addit. Manuf.
,
12
, pp.
296
304
.
32.
Panetta
,
J.
,
Zhou
,
Q.
,
Malomo
,
L.
,
Pietroni
,
N.
,
Cignoni
,
P.
, and
Zorin
,
D.
,
2015
, “
Elastic Textures for Additive Fabrication
,”
ACM Trans. Graph.
,
34
(
4
), pp.
1
12
.
33.
Sigmund
,
O.
, and
Torquato
,
S.
,
1999
, “
Design of Smart Composite Materials Using Topology Optimization
,”
Smart Mater. Struct.
,
8
(
3
), pp.
365
379
.
34.
Allaire
,
G.
,
2001
,
Shape Optimization by the Homogenization Method
, Vol.
146
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
35.
Portela
,
C. M.
,
Greer
,
J. R.
, and
Kochmann
,
D. M.
,
2018
, “
Impact of Node Geometry on the Effective Stiffness of Non-slender Three-Dimensional Truss Lattice Architectures
,”
Extreme Mech. Lett.
,
22
, pp.
138
148
.
36.
Mateos
,
A. J.
,
Huang
,
W.
,
Zhang
,
Y. W.
, and
Greer
,
J. R.
,
2019
, “
Discrete-Continuum Duality of Architected Materials: Failure, Flaws, and Fracture
,”
Adv. Funct. Mater.
,
29
(
5
), p.
1806772
.
37.
Latture
,
R. M.
,
Rodriguez
,
R. X.
,
Holmes
L. R.
, and
Zok
,
F. W.
, Jr.
,
2018
, “
Effects of Nodal Fillets and External Boundaries on Compressive Response of an Octet Truss
,”
Acta Mater.
,
149
, pp.
78
87
.
38.
Tricard
,
T.
,
Tavernier
,
V.
,
Zanni
,
C.
,
Martínez
,
J.
,
Hugron
,
P. A.
,
Neyret
,
F.
, and
Lefebvre
,
S.
,
2020
, “
Freely Orientable Microstructures for Designing Deformable 3D Prints
,”
ACM Trans. Graph.
,
39
(
6
), pp.
1
16
.
39.
Portela
,
C. M.
,
Vidyasagar
,
A.
,
Krödel
,
S.
,
Weissenbach
,
T.
,
Yee
,
D. W.
,
Greer
,
J. R.
, and
Kochmann
,
D. M.
,
2020
, “
Extreme Mechanical Resilience of Self-assembled Nanolabyrinthine Materials
,”
Proc. Natl. Acad. Sci.
,
117
(
11
), pp.
5686
5693
.
40.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
41.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
42.
Zhu
,
B.
,
Skouras
,
M.
,
Chen
,
D.
, and
Matusik
,
W.
,
2017
, “
Two-Scale Topology Optimization With Microstructures
,”
ACM Trans. Graph.
,
36
(
4
), p.
1
.
43.
Cramer
,
A. D.
,
Challis
,
V. J.
, and
Roberts
,
A. P.
,
2016
, “
Microstructure Interpolation for Macroscopic Design
,”
Struct. Multidiscipl. Optim.
,
53
(
3
), pp.
489
500
.
44.
Radman
,
A.
,
Huang
,
X.
, and
Xie
,
Y. M.
,
2013
, “
Topology Optimization of Functionally Graded Cellular Materials
,”
J. Mater. Sci.
,
48
(
4
), pp.
1503
1510
.
45.
Wang
,
J.
,
Rai
,
R.
, and
Armstrong
,
J. N.
,
2019
, “
Investigation of Compressive Deformation Behaviors of Cubic Periodic Cellular Structural Cubes Through 3D Printed Parts and FE Simulations
,”
Rapid Prototyp. J.
,
26
(
3
), pp.
459
472
.
46.
Yang
,
N.
,
Du
,
C. F.
,
Wang
,
S.
,
Yang
,
Y.
, and
Zhang
,
C.
,
2016
, “
Mathematically Defined Gradient Porous Materials
,”
Mater. Lett.
,
173
, pp.
136
140
.
47.
Liu
,
F.
,
Mao
,
Z.
,
Zhang
,
P.
,
Zhang
,
D. Z.
,
Jiang
,
J.
, and
Ma
,
Z.
,
2018
, “
Functionally Graded Porous Scaffolds in Multiple Patterns: New Design Method, Physical and Mechanical Properties
,”
Mater. Des.
,
160
, pp.
849
860
.
48.
Wang
,
J.
, and
Rai
,
R.
,
2016,
Classification of Bio-inspired Periodic Cubic Cellular Materials Based on Compressive Deformation Behaviors of 3d Printed Parts and fe Simulations
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Aug.
,
American Society of Mechanical Engineers
, Vol.
50190
, p.
V007T06A003
.
49.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
50.
Brochu
,
E.
,
Cora
,
V. M.
, and
De Freitas
,
N.
,
2010
, “
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
,”
arXiv
.
51.
Frazier
,
P. I.
,
2018
, “
A Tutorial on Bayesian Optimization
,”
arXiv
.
52.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
53.
Koyama
,
Y.
,
Sato
,
I.
,
Sakamoto
,
D.
, and
Igarashi
,
T.
,
2017
, “
Sequential Line Search for Efficient Visual Design Optimization by Crowds
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
11
.
54.
Persson
,
P. O.
, and
Strang
,
G.
,
2004
, “
A Simple Mesh Generator in MATLAB
,”
SIAM Rev.
,
46
(
2
), pp.
329
345
.
55.
Taramón
,
J. M.
,
Morgan
,
J. P.
,
Shi
,
C.
, and
Hasenclever
,
J.
,
2019
, “
Generation of Unstructured Meshes in 2-D, 3-D, and Spherical Geometries With Embedded High-Resolution Sub-regions
,”
Comput. Geosci.
,
133
, p.
104324
.
56.
Yoo
,
D. J.
,
2009
, “
General 3D Offsetting of a Triangular Net Using an Implicit Function and the Distance Fields
,”
Int. J. Precis. Eng. Manuf.
,
10
(
4
), pp.
131
142
.
57.
Stava
,
O.
,
Vanek
,
J.
,
Benes
,
B.
,
Carr
,
N.
, and
Měch
,
R.
,
2012
, “
Stress Relief: Improving Structural Strength of 3D Printable Objects
,”
ACM Trans. Graph.
,
31
(
4
), pp.
1
11
.
58.
Rasmussen
,
C. E.
,
2003
, “Gaussian Processes in Machine Learning,”
Summer School on Machine Learning
,
Springer
,
Berlin/Heidelberg
, pp.
63
71
.
You do not currently have access to this content.