Abstract

Additive manufacturing (AM) introduces geometric uncertainties on the fabricated strut members of lattice structures. These uncertainties result in deviations between the modeled and fabricated geometries of struts. The use of deep neural networks (DNNs) to accurately predict the statistical parameters of the effective strut diameters to account for the AM-introduced geometric uncertainties with a small training dataset for constant process parameters is studied in this research. For the training data, struts with certain angle and diameter values are fabricated by the material extrusion process. The geometric uncertainties are quantified using the random field theory based on the spatial strut radius measurements obtained from the microscope images of the fabricated struts. The uncertainties are propagated to the effective diameters of the struts using a stochastic upscaling technique. The relationship between the modeled strut diameter and the characterized statistical parameters of the effective diameters are used as the training data to establish a DNN model. The validation results show that the DNN model can predict the statistical parameters of the effective diameters of the struts modeled with angles and diameters different from the ones used in the training data with good accuracy even if the training data set is small. Developing such a DNN model with small data will allow designers to use the fabricated results in the design optimization processes without requiring additional experimentations.

References

1.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C. L.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput.-Aided Des.
,
69
, pp.
65
89
.
2.
Jia
,
Z.
,
Liu
,
F.
,
Jiang
,
X.
, and
Wang
,
L.
,
2020
, “
Engineering Lattice Metamaterials for Extreme Property, Programmability, and Multifunctionality
,”
J. Appl. Phys.
,
127
(
15
), p.
150901
.
3.
Nazir
,
A.
,
Abate
,
K. M.
,
Kumar
,
A.
, and
Jeng
,
J. Y.
,
2019
, “
A State-of-the-Art Review on Types, Design, Optimization, and Additive Manufacturing of Cellular Structures
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9–12
), pp.
3489
3510
.
4.
Goh
,
G. D.
,
Yap
,
Y. L.
,
Tan
,
H. K. J.
,
Sing
,
S. L.
,
Goh
,
G. L.
, and
Yeong
,
W. Y.
,
2020
, “
Process–Structure–Properties in Polymer Additive Manufacturing via Material Extrusion: A Review
,”
Crit. Rev. Solid State Mater. Sci.
,
45
(
2
), pp.
113
133
.
5.
Gonzalez-Gutierrez
,
J.
,
Cano
,
S.
,
Schuschnigg
,
S.
,
Kukla
,
C.
,
Sapkota
,
J.
, and
Holzer
,
C.
,
2018
, “
Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives
,”
Materials
,
11
(
5
), p.
840
.
6.
Agarwala
,
M. K.
,
Jamalabad
,
V. R.
,
Langrana
,
N. A.
,
Safari
,
A.
,
Whalen
,
P. J.
, and
Danforth
,
S. C.
,
1996
, “
Structural Quality of Parts Processed by Fused Deposition
,”
Rapid Prototyp. J.
,
2
(
4
), pp.
4
19
.
7.
Ahn
,
S. H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyp. J.
,
8
(
4
), pp.
248
257
.
8.
Schoinochoritis
,
B.
,
Chantzis
,
D.
, and
Salonitis
,
K.
,
2017
, “
Simulation of Metallic Powder Bed Additive Manufacturing Processes With the Finite Element Method: A Critical Review
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
231
(
1
), pp.
96
117
.
9.
Lozanovski
,
B.
,
Downing
,
D.
,
Tino
,
R.
,
Tran
,
P.
,
Shidid
,
D.
,
Emmelmann
,
C.
,
Qian
,
M.
,
Choong
,
P.
,
Brandt
,
M.
, and
Leary
,
M.
,
2020
, “
Image-Based Geometrical Characterization of Nodes in Additively Manufactured Lattice Structures
,”
3D Print. Addit. Manuf.
,
8
(
1
), pp.
51
68
.
10.
Karamooz Ravari
,
M. R.
,
Kadkhodaei
,
M.
,
Badrossamay
,
M.
, and
Rezaei
,
R.
,
2014
, “
Numerical Investigation on Mechanical Properties of Cellular Lattice Structures Fabricated by Fused Deposition Modeling
,”
Int. J. Mech. Sci.
,
88
, pp.
154
161
.
11.
Park
,
S. I.
,
Rosen
,
D. W.
,
Choi
,
S. k.
, and
Duty
,
C. E.
,
2014
, “
Effective Mechanical Properties of Lattice Material Fabricated by Material Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
1
, pp.
12
23
.
12.
Gorguluarslan
,
R. M.
,
Park
,
S.-I.
,
Rosen
,
D. W.
, and
Choi
,
S.-K.
,
2015
, “
A Multilevel Upscaling Method for Material Characterization of Additively Manufactured Part Under Uncertainties
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111408
.
13.
Gungor
,
O. U.
, and
Gorguluarslan
,
R. M.
,
2020
, “
Experimental Characterization of Spatial Variability for Random Field Modeling on Struts of Additively Manufactured Lattice Structures
,”
Addit. Manuf.
,
36
, p.
101471
.
14.
Liu
,
X.
, and
Shapiro
,
V.
,
2017
, “
Sample-Based Synthesis of Functionally Graded Material Structures
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031012
.
15.
Yan
,
X.
, and
Ballu
,
A.
,
2019
, “
Review and Comparison of Form Error Simulation Methods for Computer-Aided Tolerancing
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
010802
.
16.
McKeand
,
A. M.
,
Gorguluarslan
,
R. M.
,
Brown
,
J.
, and
Choi
,
S.-K.
,
2019
, “
Multiscale Modeling of Turbine Engine Component Under Manufacturing Uncertainty
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041017
.
17.
Loeve
,
M.
,
1978
,
Probability Theory II
,
Springer-Verlag
,
New York
.
18.
Gorguluarslan
,
R. M.
,
Gandhi
,
U. N.
,
Song
,
Y.
, and
Choi
,
S. K.
,
2017
, “
An Improved Lattice Structure Design Optimization Framework Considering Additive Manufacturing Constraints
,”
Rapid Prototyp. J.
,
23
(
2
), pp.
305
319
.
19.
Stanković
,
T.
,
Mueller
,
J.
, and
Shea
,
K.
,
2017
, “
The Effect of Anisotropy on the Optimization of Additively Manufactured Lattice Structures
,”
Addit. Manuf.
,
17
, pp.
67
76
.
20.
Zhang
,
Z.
,
Shi
,
J.
,
Yu
,
T.
,
Santomauro
,
A.
,
Gordon
,
A.
,
Gou
,
J.
, and
Wu
,
D.
,
2020
, “
Predicting Flexural Strength of Additively Manufactured Continuous Carbon Fiber-Reinforced Polymer Composites Using Machine Learning
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061015
.
21.
Moges
,
T.
,
Yang
,
Z.
,
Jones
,
K.
,
Feng
,
S.
,
Witherell
,
P.
, and
Lu
,
Y.
,
2021
, “
Hybrid Modeling Approach for Melt-Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
5
), p.
050902
.
22.
Hornik
,
K.
,
1991
, “
Approximation Capabilities of Multilayer Feedforward Networks
,”
Neural Networks
,
4
(
2
), pp.
251
257
.
23.
Cybenko
,
G.
,
1989
, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control. Signals Syst.
,
2
(
4
), pp.
303
314
.
24.
Gorguluarslan
,
R.
,
Kim
,
E.-S.
,
Choi
,
S.-K.
, and
Choi
,
H.-J.
,
2014
, “
Reliability Estimation of Washing Machine Spider Assembly via Classification
,”
Int. J. Adv. Manuf. Technol.
,
72
(
9–12
), pp.
1581
1591
.
25.
Koeppe
,
A.
,
Bamer
,
F.
, and
Markert
,
B.
,
2016
, “
Model Reduction and Submodelling Using Neural Networks
,”
PAMM
,
16
(
1
), pp.
537
538
.
26.
Ates
,
G. C.
, and
Gorguluarslan
,
R. M.
,
2021
, “
Two-Stage Convolutional Encoder-Decoder Network to Improve the Performance and Reliability of Deep Learning Models for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
63
(
4
), pp.
1927
1950
.
27.
Zhang
,
Y.
,
Mao
,
K.
,
Leigh
,
S.
,
Shah
,
A.
,
Chao
,
Z.
, and
Ma
,
G.
,
2020
, “
A Parametric Study of 3D Printed Polymer Gears
,”
Int. J. Adv. Manuf. Technol.
,
107
(
11–12
), pp.
4481
4492
.
28.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
29.
Feng
,
S.
,
Zhou
,
H.
, and
Dong
,
H.
,
2019
, “
Using Deep Neural Network With Small Dataset to Predict Material Defects
,”
Mater. Des.
,
162
, pp.
300
310
.
30.
Qi
,
X.
,
Chen
,
G.
,
Li
,
Y.
,
Cheng
,
X.
, and
Li
,
C.
,
2019
, “
Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives
,”
Engineering
,
5
(
4
), pp.
721
729
.
31.
Jin
,
Z.
,
Zhang
,
Z.
,
Demir
,
K.
, and
Gu
,
G. X.
,
2020
, “
Machine Learning for Advanced Additive Manufacturing
,”
Matter
,
3
(
5
), pp.
1541
1556
.
32.
Goh
,
G. D.
,
Sing
,
S. L.
, and
Yeong
,
W. Y.
,
2020
, “
A Review on Machine Learning in 3D Printing: Applications, Potential, and Challenges
,”
Artif. Intell. Rev.
,
54
(
1
), pp.
63
94
.
33.
Mahmood
,
M. A.
,
Visan
,
A. I.
,
Ristoscu
,
C.
, and
Mihailescu
,
I. N.
,
2021
, “
Artificial Neural Network Algorithms for 3D Printing
,”
Matereials
,
14
(
1
), p.
163
.
34.
Zhang
,
J.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning-Based Tensile Strength Prediction in Fused Deposition Modeling
,”
Comput. Ind.
,
107
, pp.
11
21
.
35.
Weimer
,
D.
,
Scholz-Reiter
,
B.
, and
Shpitalni
,
M.
,
2016
, “
Design of Deep Convolutional Neural Network Architectures for Automated Feature Extraction in Industrial Inspection
,”
CIRP Ann.
,
65
(
1
), pp.
417
420
.
36.
Koeppe
,
A.
,
Hernandez Padilla
,
C. A.
,
Voshage
,
M.
,
Schleifenbaum
,
J. H.
, and
Markert
,
B.
,
2018
, “
Efficient Numerical Modeling of 3D-Printed Lattice-Cell Structures Using Neural Networks
,”
Manuf. Lett.
,
15
, pp.
147
150
.
37.
Alwattar
,
T. A.
, and
Mian
,
A.
,
2019
, “
Development of an Elastic Material Model for BCC Lattice Cell Structures Using Finite Element Analysis and Neural Networks Approaches
,”
J. Compos. Sci.
,
3
(
2
), p.
33
.
38.
Tang
,
Y.
,
Dong
,
G.
,
Zhou
,
Q.
, and
Zhao
,
Y. F.
,
2018
, “
Lattice Structure Design and Optimization With Additive Manufacturing Constraints
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
4
), pp.
1546
1562
.
39.
Gorguluarslan
,
R. M.
,
Ates
,
G. C.
,
Gungor
,
O. U.
, and
Yamaner
,
Y.
,
2021
, “
Strut Diameter Uncertainty Prediction by Deep Neural Network for Additively Manufactured Lattice Structures
,”
ASME International Design Engineering Technical Conferences and Information in Engineering Conference, Proceedings IDETC/CIE 2021
,
Online, Virtual
,
Aug. 17–19
, pp.
1
9
.
40.
Gorguluarslan
,
R. M.
, and
Utku Gungor
,
O.
,
2020
, “
Investigation of Spatial Variability on Strut Diameters of Additively Manufactured Lattice Structures
,”
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
,
Online, Virtual
,
Nov. 16–19
, pp.
1
9
.
41.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
42.
Box
,
G. E. P.
,
Jenkins
,
G. M.
, and
Reinsel
,
G. C.
,
2013
,
Time Series Analysis: Forecasting and Control
, 4nd ed.,
John Wiley & Sons, Ltd.
,
Hoboken, NJ
.
43.
Webster
,
R.
, and
Oliver
,
M. A.
,
2008
,
Geostatistics for Environmental Scientists
, 2nd ed.,
John Wiley & Sons, Ltd.
,
West Sussex, England
.
44.
Lecun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
45.
Nair
,
V.
, and
Hinton
,
G. E.
,
2010
, “
Rectified Linear Units Improve Restricted Boltzmann Machines
,”
ICML 2010—Proceedings, 27th International Conference on Machine Learning
,
Haifa, Israel
,
June 21–24
, pp.
807
814
.
46.
Ruder
,
S.
,
2016
, “
An Overview of Gradient Descent Optimization Algorithms
,” arXiv Prepr. arXiv1609.04747.
47.
Robbins
,
H.
, and
Monro
,
S.
,
1951
, “
A Stochastic Approximation Method
,”
Ann. Math. Stat.
,
22
(
3
), pp.
400
407
.
48.
Duchi
,
J.
,
Hazan
,
E.
, and
Singer
,
Y.
,
2011
, “
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
,”
J. Mach. Learn. Res.
,
12
, pp.
2121
2159
.
49.
Zeiler
,
M. D.
,
2012
, “
ADADELTA: An Adaptive Learning Rate Method
,” arXiv Prepr. arXiv1212.5701.
50.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings
, arXiv:1412.6980.
51.
Larochelle
,
H.
,
Erhan
,
D.
,
Courville
,
A.
,
Bergstra
,
J.
, and
Bengio
,
Y.
,
2007
, “
An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation
,”
24th International Conference on Machine Learning
,
Corvalis, OR
,
June 20–24
, pp.
473
480
.
52.
Bergstra
,
J.
, and
Bengio
,
Y.
,
2012
, “
Random Search for Hyper-Parameter Optimization
,”
J. Mach. Learn. Res.
,
13
, pp.
281
305
.
53.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
, et al
,
2016
, “
Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
,” arXiv Prepr. arXiv1603.04467.
54.
Chollet
,
F.
,
2015
, “
Keras: Theano-Based Deep Learning Library
,” Code: https://github.com/fchollet. Documentation: http://keras.io, Accessed November 1, 2021.
55.
Prechelt
,
L.
,
1998
, “
Automatic Early Stopping Using Cross Validation: Quantifying the Criteria
,”
Neural Networks.
,
11
(
4
), pp.
761
767
.
56.
Caruana
,
R.
,
Lawrence
,
S.
, and
Giles
,
L.
,
1999
, “
Overfitting in Neural Nets: Backpropagation, Conjugate Gradient, and Early Stopping
,”
Advances in Neural Information Processing Systems
,
Denver, CO
,
Nov. 30–Dec. 2
.
57.
Finnoff
,
W.
,
Hergert
,
F.
, and
Zimmermann
,
H. G.
,
1993
, “
Improving Model Selection by Nonconvergent Methods
,”
Neural Networks
,
6
(
6
), pp.
771
783
.
You do not currently have access to this content.