Abstract

Accurate measurement of the volumetric flowrate of working liquids is essential for process control, as well as energy consumption evaluation. Electromagnetic flowmeters have gained popularity in applications where low-pressure drop and low maintenance are required. Dwyer Instruments, Inc. recently developed an adjustable insertion electromagnetic flowmeter (IEF) featuring accurate and reliable measurement. However, unexpected and non-repeatable behavior in the K-factor was observed during the calibration process. The K-factor is the coefficient used to convert the measured electric potential to the flow velocity in pipes, and the non-repeatable behavior imposes challenges for precise measurement. A one-way coupled magnetohydrodynamics model was developed to reduce the effort and time of onsite troubleshooting and optimization. By modeling the measurement process, the transition of flow regimes and the regeneration of the boundary layer on the electrode surface were identified as the causes of the non-repeatable issue. Then, a series of parametric studies were performed to provide reliable solutions. A new design with further embedded electrodes to allow the smooth transition between boundary layers was recommended. The field test showed excellent repeatability by using the new design, and the non-repeatable issue was entirely resolved. The improvement in the IEF design was implemented in production in less than one week, and it reduced the calibration time by 50%.

References

1.
Ma
,
H.
,
Silaen
,
A. K.
,
Zhou
,
C. Q.
,
Ma
,
S.
,
Moss
,
R.
, and
Fisher
,
M.
,
2020
, β€œ
CFD Analysis and Improvement on an Insertion Electromagnetic Flowmeter
,”
Proceedings of ASME 2020 International Mechanical Engineering Congress and Exposition
,
Virtual Conference
,
Nov. 16–19
, Vol.
84539
, p.
V006T06A029
.
2.
Cascetta
,
F.
,
1995
, β€œ
Short History of the Flowmetering
,”
Isa Trans.
,
34
(
3
), pp.
229
–
243
.
3.
Fisher
,
H. J.
, and
Faraday
,
M.
,
1967
,
Experimental Researches in Electricity
,
Green Lion Press
,
Santa Fe, NW
.
4.
Hughes
,
M.
,
Pericleous
,
K. A.
, and
Cross
,
M.
,
1994
, β€œ
The CFD Analysis of Simple Parabolic and Elliptic MHD Flows
,”
Appl. Math. Modell.
,
18
(
3
), pp.
150
–
155
.
5.
Lu
,
B.
,
Xu
,
L.
, and
Zhang
,
X.
,
2013
, β€œ
Three-Dimensional MHD Simulations of the Electromagnetic Flowmeter for Laminar and Turbulent Flows
,”
Flow Meas. Instrum.
,
33
, pp.
239
–
243
.
6.
Zhou
,
T.
,
Yang
,
Z.
,
Ni
,
M.
, and
Chen
,
H.
,
2010
, β€œ
Code Development and Validation for Analyzing Liquid Metal MHD Flow in Rectangular Ducts
,”
Fusion Eng. Des.
,
85
(
10–12
), pp.
1736
–
1741
.
7.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
, Vol.
1
,
Clarendon Press
,
Oxford, UK
.
8.
Shercliff
,
J. A.
, β€œ
Relation Between the Velocity Profile and the Sensitivity of Electromagnetic Flowmeters
,”
J. Appl. Phys.
,
25
(
6
), pp.
817
–
818
.
9.
Shercliff
,
J. A.
,
1962
,
The Theory of Electromagnetic Flow-Measurement
,
Cambridge University Press
,
Cambridge, UK
.
10.
Bevir
,
M. K.
,
1970
, β€œ
The Theory of Induced Voltage Electromagnetic Flowmeters
,”
J. Fluid Mech.
,
43
(
3
), pp.
577
–
590
.
11.
Bevir
,
M. K.
,
O'sullivan
,
V. T.
, and
Wyatt
,
D. G.
,
1981
, β€œ
Computation of Electromagnetic Flowmeter Characteristics From Magnetic Field Data
,”
J. Phys. D: Appl. Phys.
,
14
(
3
), pp.
373
–
388
.
12.
Luntta
,
E.
, and
Halttunen
,
J.
,
1989
, β€œ
The Effect of Velocity Profile on Electromagnetic Flow Measurement
,”
Sens. Actuators
,
16
(
4
), pp.
335
–
344
.
13.
Lim
,
K. W.
, and
Chung
,
M. K.
,
1998
, β€œ
Relative Errors in Evaluating the Electromagnetic Flowmeter Signal Using the Weight Function Method and the Finite Volume Method
,”
Flow Meas. Instrum.
,
9
(
4
), pp.
229
–
235
.
14.
Wyatt
,
D. G.
,
1983
, β€œ
Computation of Electromagnetic Flowmeter Characteristics From Magnetic Field Data. II. Errors
,”
J. Phys. D Appl. Phys.
,
16
(
4
), pp.
465
–
478
.
15.
O'Sullivan
,
V. T.
, and
Wyatt
,
D. G.
,
1983
, β€œ
Computation of Electromagnetic Flowmeter Characteristics From Magnetic Field Data. III. Rectilinear Weight Functions
,”
J. Phys. D Appl. Phys.
,
16
(
8
), pp.
1461
–
1476
.
16.
Nashed
,
M.
,
1972
, β€œ
Solution of the Electromagnetic Flowmeter Equation
,”
J. Phys. D Appl. Phys.
,
5
(
5
), p.
L33
–
L36
.
17.
Hemp
,
J.
, and
Versteeg
,
H. K.
,
1986
, β€œ
Prediction of Electromagnetic Flowmeter Characteristics
,”
J. Phys. D Appl. Phys.
,
19
(
8
), pp.
1459
–
1476
.
18.
Lee
,
S.
, and
Dulikravich
,
G. S.
,
1991
, β€œ
Magnetohydrodynamic Steady Flow Computations in Three Dimensions
,”
Int. J. Numer. Methods Fluids
,
13
(
7
), pp.
917
–
936
.
19.
Choo
,
R. T. C.
,
Szekely
,
J.
, and
David
,
S. A.
,
1992
, β€œ
On the Calculation of the Free Surface Temperature of Gas-Tungsten-Arc Weld Pools From First Principles: Part II. Modeling the Weld Pool and Comparison With Experiments
,”
Metall. Mater. Trans. B
,
23
(
3
), pp.
371
–
384
.
20.
Maeda
,
T.
,
1987
, β€œ
A Survey Note on Magnetic Field Analysis
,”
Proceedings of the 2nd International PHOENICS Users Conference
,
Nov. 23–25
,
London, UK
.
21.
Sahu
,
S.
,
Bhattacharyay
,
R. P.
,
Rajendrakumar
,
E.
,
Platacis
,
E.
, and
Brucenis
,
I.
,
2012
, β€œ
Calibration of MHD Flowmeter Using COMSOL Software
,”
Proceedings of the 2012 COMSOL Conference
,
Bangalore, India
,
Oct. 3–5
.
22.
Wang
,
J. Z.
,
Lucas
,
G. P.
, and
Tian
,
G. Y.
,
2007
, β€œ
A Numerical Approach to the Determination of Electromagnetic Flow Meter Weight Functions
,”
Meas. Sci. Technol.
,
18
(
3
), pp.
548
–
554
.
23.
Wang
,
X.
,
Kolesnikov
,
Y.
, and
Thess
,
A.
,
2012
, β€œ
Numerical Calibration of a Lorentz Force Flowmeter
,”
Meas. Sci. Technol.
,
23
(
4
), p.
045005
.
24.
Kang
,
D. H.
,
Ahn
,
Y. C.
,
Do Oh
,
B.
, and
Kim
,
M. H.
,
2004
, β€œ
Advanced Electromagnetic Flowmetry for Slug Flow: Numerical Signal Prediction and Calibration
,”
Int. J. Multiphase Flow
,
30
(
6
), pp.
585
–
614
.
25.
Mignot
,
E.
,
Bonakdari
,
H.
,
Knothe
,
P.
,
Lipeme Kouyi
,
G.
,
Bessette
,
A.
,
Rivière
,
N.
, and
Bertrand-Krajewski
,
J.-L.
,
2012
, β€œ
Experiments and 3D Simulations of Flow Structures in Junctions and Their Influence on Location of Flowmeters
,”
Water Sci. Technol.
,
66
(
6
), pp.
1325
–
1332
.
26.
Lim
,
K. W.
, and
Chung
,
M. K.
,
1999
, β€œ
Numerical Investigation on the Installation Effects of Electromagnetic Flowmeter Downstream of a 90 Elbow-Laminar Flow Case
,”
Flow Meas. Instrum.
,
10
(
3
), pp.
167
–
174
.
27.
Wang
,
J. Z.
,
Tian
,
G. Y.
, and
Lucas
,
G. P.
,
2007
, β€œ
Relationship Between Velocity Profile and Distribution of Induced Potential for an Electromagnetic Flow Meter
,”
Flow Meas. Instrum.
,
18
(
2
), pp.
99
–
105
.
28.
Zhang
,
X.
,
1998
, β€œ
2D Analysis for the Virtual Current Distribution in an Electromagnetic Flow Meter With a Bubble at Various Axis Positions
,”
Meas. Sci. Technol.
,
9
(
9
), pp.
1501
–
1505
.
29.
Mi
,
Y.
,
1998
, β€œ
Two-Phase Flow Characterization Based on Advanced Instrumentation, Neural Networks, and Mathematical Modeling
,”
Ph.D. thesis
,
Purdue University
,
West Lafayette, IN
.
30.
Mi
,
Y.
,
Ishii
,
M.
, and
Tsoukalas
,
L. H.
,
2001
, β€œ
Investigation of Vertical Slug Flow With Advanced Two-Phase Flow Instrumentation
,”
Nucl. Eng. Des.
,
204
(
1–3
), pp.
69
–
85
.
31.
Ahn
,
Y. C.
,
Do Oh
,
B.
, and
Kim
,
M. H.
,
2003
, β€œ
A Current-Sensing Electromagnetic Flowmeter for Two-Phase Flow and Numerical Simulation of the Three-Dimensional Virtual Potential Distribution: I. Fundamentals and Annular Flow
,”
Meas. Sci. Technol.
,
14
(
3
), pp.
239
–
250
.
32.
Wang
,
P. J.
,
Chang
,
C. Y.
, and
Chang
,
M. L.
,
2004
, β€œ
Simulation of Two-Dimensional Fully Developed Laminar Flow for a Magnetohydrodynamic (MHD) Pump
,”
Biosens. Bioelectron.
,
20
(
1
), pp.
115
–
121
.
33.
Moody
,
L. F.
,
1944
, β€œ
Friction Factors for Pipe Flow
,”
Trans. Am. Soc. Mech. Eng.
,
66
(
8
), pp.
671
–
684
.
34.
Crittenden
,
J. C.
,
Trussell
,
R. R.
,
Hand
,
D. H.
,
Howe
,
K.
, and
Tchobanoglous
,
G.
,
2012
,
MWH's Water Treatment: Principles and Design
,
John Wiley & Sons
,
Hoboken, NJ
.
35.
White
,
F. M.
,
2011
,
Fluid Mechanics
, 7th ed.,
McGraw-Hill
,
New York
.
36.
Schlichting
,
H.
, and
Gersten
,
K.
,
2016
,
Boundary-Layer Theory
,
Springer
,
Berlin, Germany
.
37.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, β€œ
A New k-Ι› Eddy Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
–
238
.
You do not currently have access to this content.