Abstract
The process of layered additive manufacturing (AM) limits manufactured parts, which leads to the stair-step error, support structures and the anisotropy. Curved layer fused deposition modeling (CLFDM) has been proposed by researchers to alleviate these problems. However, to the best of our knowledge, available CLFDM mainly focuses on filling with the uniform extruded filament in the same layer. While intricate parts usually possess small and critical features, as well as manufacturing error and assembling error. Geometry accuracy and mechanical property of fused deposition modeling (FDM) parts are closely related to interlayer and interroad bonding. Therefore, inspired by nonuniform layers of the onion, this paper pays attention to CLFDM with variable extruded filament (VEF) in the layer and between adjacent layers innovatively, whereby the direction and the dimension of the extruded filament are variable. The literature review of slicing and path planning is given first to make readers better understand the current status and the research gap to highlight the innovation of this paper. Then, flat layer FDM and CLFDM with VEF are modeled, respectively, from the aspect of interlayer and interroad bonding. After that, the relationships among key process parameters are analyzed. Finally, the simulation is provided to verify the effectiveness and advantages of our method from a theoretical point of view. Generally, this research can be a foundation for CLFDM with VEF, and the preliminary research has shown broad applications.