Abstract

The process of layered additive manufacturing (AM) limits manufactured parts, which leads to the stair-step error, support structures and the anisotropy. Curved layer fused deposition modeling (CLFDM) has been proposed by researchers to alleviate these problems. However, to the best of our knowledge, available CLFDM mainly focuses on filling with the uniform extruded filament in the same layer. While intricate parts usually possess small and critical features, as well as manufacturing error and assembling error. Geometry accuracy and mechanical property of fused deposition modeling (FDM) parts are closely related to interlayer and interroad bonding. Therefore, inspired by nonuniform layers of the onion, this paper pays attention to CLFDM with variable extruded filament (VEF) in the layer and between adjacent layers innovatively, whereby the direction and the dimension of the extruded filament are variable. The literature review of slicing and path planning is given first to make readers better understand the current status and the research gap to highlight the innovation of this paper. Then, flat layer FDM and CLFDM with VEF are modeled, respectively, from the aspect of interlayer and interroad bonding. After that, the relationships among key process parameters are analyzed. Finally, the simulation is provided to verify the effectiveness and advantages of our method from a theoretical point of view. Generally, this research can be a foundation for CLFDM with VEF, and the preliminary research has shown broad applications.

References

1.
Sullivan
,
T.
, and
Regan
,
F.
,
2011
, “
Biomimetic Design of Novel Antifouling Materials for Application to Environmental Sensing Technologies
,”
J. Ocean Technol.
,
6
(
4
), pp.
42
54
.
2.
Zhao
,
D.
, and
Guo
,
W. Z.
,
2019
, “
Shape and Performance Controlled Advanced Design for Additive Manufacturing (ADfAM): A Review of Slicing and Path Planning
,”
ASME J. Manuf. Sci. Eng.
,
142
(1)
, p.
010801
.
3.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
, 2nd ed.,
Springer-Verlag
,
New York
, pp.
1
498
.
4.
Pandey
,
M.
,
Venkata Reddy
,
P.
, and
Dhande
,
S. G.
,
2003
, “
Slicing Procedures in Layered Manufacturing: A Review
,”
Rapid Prototyp. J.
,
9
(
5
), pp.
274
288
. 10.1108/13552540310502185
5.
Nadiyapara
,
H. H.
, and
Pande
,
S.
,
2017
, “
A Review of Variable Slicing in Fused Deposition Modeling
,”
J. Inst. Eng. Ser. C
,
98
(
3
), pp.
387
393
. 10.1007/s40032-016-0272-7
6.
Xu
,
J.
,
Gu
,
X.
,
Ding
,
D.
,
Pan
,
Z.
, and
Chen
,
K.
,
2018
, “
A Review of Slicing Methods for Directed Energy Deposition Based Additive Manufacturing
,”
Rapid Prototyp. J.
,
24
(
6
), pp.
1012
1025
. 10.1108/RPJ-10-2017-0196
7.
Mao
,
H.
,
Kwok
,
T. H.
,
Chen
,
Y.
, and
Wang
,
C. C. L.
,
2019
, “
Adaptive Slicing Based on Efficient Profile Analysis
,”
CAD Comput. Aided Des.
,
107
, pp.
89
101
. 10.1016/j.cad.2018.09.006
8.
Fu
,
G.
,
Fu
,
J.
,
Lin
,
Z.
,
Shen
,
H.
, and
Jin
,
Y.
,
2017
, “
A Polygons Boolean Operations-Based Adaptive Slicing With Sliced Data for Additive Manufacturing
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
231
(
15
), pp.
2783
2799
. 10.1177/0954406216640576
9.
Zhang
,
H.
,
Wang
,
X.
,
Wang
,
G.
, and
Zhang
,
Y.
,
2013
, “
Hybrid Direct Manufacturing Method of Metallic Parts Using Deposition and Micro Continuous Rolling
,”
Rapid Prototyp. J.
,
19
(
6
), pp.
387
394
. 10.1108/RPJ-01-2012-0006
10.
Jones
,
J. B.
,
Wimpenny
,
D. I.
, and
Gibbons
,
G. J.
,
2015
, “
Additive Manufacturing Under Pressure
,”
Rapid Prototyp. J.
,
21
(
1
), pp.
89
97
. 10.1108/RPJ-02-2013-0016
11.
Yuan
,
L.
,
2008
, “
A Preliminary Research on Development of a Fibre-Composite, Curved FDM System
,”
Master’s Thesis
,
National University of Singapore
,
Singapore
.
12.
Llewellyn-Jones
,
T.
,
Allen
,
R.
, and
Trask
,
R.
,
2016
, “
Curved Layer Fused Filament Fabrication Using Automated Toolpath Generation
,”
3D Print. Addit. Manuf.
,
3
(
4
), pp.
236
243
. 10.1089/3dp.2016.0033
13.
Zhao
,
C.
,
2017
, “
Biomimetic Design and 3D Printing of Composite by Coupling Heterogeneous Materials and Microstructures
,”
Jilin University
,
Changchun, China
.
14.
Grunenfelder
,
L. K.
,
Milliron
,
G.
,
Herrera
,
S.
,
Gallana
,
I.
,
Yaraghi
,
N.
,
Hughes
,
N.
,
Evans-Lutterodt
,
K.
,
Zavattieri
,
P.
, and
Kisailus
,
D.
,
2018
, “
Ecologically Driven Ultrastructural and Hydrodynamic Designs in Stomatopod Cuticles
,”
Adv. Mater.
,
30
(
9
), p.
1705295
. 10.1002/adma.201705295
15.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
, and
van Duin
,
S.
,
2016
,
New Trends 3D Print
,
IntechOpen
,
London
, pp.
3
24
. 10.5772/63042
16.
Chakraborty
,
D.
,
Aneesh Reddy
,
B.
, and
Roy Choudhury
,
A.
,
2008
, “
Extruder Path Generation for Curved Layer Fused Deposition Modeling
,”
CAD Comput. Aided Des.
,
40
(
2
), pp.
235
243
. 10.1016/j.cad.2007.10.014
17.
Patel
,
Y.
,
Kshattriya
,
A.
,
Singamneni
,
S. B.
, and
Choudhury
,
A. R.
,
2015
, “
Application of Curved Layer Manufacturing for Preservation of Randomly Located Minute Critical Surface Features in Rapid Prototyping
,”
Rapid Prototyp. J.
,
21
(
6
), pp.
725
734
. 10.1108/RPJ-07-2013-0073
18.
Singamneni
,
S.
,
Roychoudhury
,
A.
,
Diegel
,
O.
, and
Huang
,
B.
,
2012
, “
Modeling and Evaluation of Curved Layer Fused Deposition
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
27
35
. 10.1016/j.jmatprotec.2011.08.001
19.
Jin
,
Y.
,
Du
,
J.
,
He
,
Y.
, and
Fu
,
G.
,
2017
, “
Modeling and Process Planning for Curved Layer Fused Deposition
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
273
285
. 10.1007/s00170-016-9743-5
20.
Huang
,
B.
, and
Singamneni
,
S.
,
2014
, “
Curved Layer Fused Deposition Modeling With Varying Raster Orientations
,”
Appl. Mech. Mater.
,
446–447
, pp.
263
269
. 10.4028/www.scientific.net/AMM.707.263
21.
Allen
,
R. J. A.
, and
Trask
,
R. S.
,
2015
, “
An Experimental Demonstration of Effective Curved Layer Fused Filament Fabrication Utilising a Parallel Deposition Robot
,”
Addit. Manuf.
,
8
, pp.
78
87
. 10.1016/j.addma.2015.09.001
22.
Rangesh
,
A.
, and
O'Neill
,
W.
,
2012
, “
The Foundations of a New Approach to Additive Manufacturing: Characteristics of Free Space Metal Deposition
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
203
210
. 10.1016/j.jmatprotec.2011.09.005
23.
Dai
,
C.
,
Wang
,
C. C. L.
,
Wu
,
C.
,
Lefebvre
,
S.
,
Fang
,
G.
, and
Liu
,
Y. J.
,
2018
, “
Support-Free Volume Printing by Multi-Axis Motion
,”
ACM Trans. Graph.
,
37
(
4
). 10.1145/3197517.3201342
24.
Huang
,
B.
, and
Singamneni
,
S. B.
,
2015
, “
Curved Layer Adaptive Slicing (CLAS) for Fused Deposition Modelling
,”
Rapid Prototyp. J.
,
21
(
4
), pp.
354
367
. 10.1108/RPJ-06-2013-0059
25.
Huang
,
B.
, and
Singamneni
,
S.
,
2015
, “
A Mixed-Layer Approach Combining Both Flat and Curved Layer Slicing for Fused Deposition Modelling
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
229
(
12
), pp.
2238
2249
. 10.1177/0954405414551076
26.
Huang
,
B.
, and
Singamneni
,
S.
,
2009
, “
Development of a Software Procedure for Curved Layered Fused Deposition Modelling (CLFDM)
,”
Master of Engineering Thesis
,
Auckland University of Technology
,
Auckland, New Zealand
.
27.
Zhao
,
D.
, and
Guo
,
W.
,
2019
, “
Mixed-Layer Adaptive Slicing for Robotic Additive Manufacturing (AM) Based on Decomposing and Regrouping
,”
J. Intell. Manuf.
28.
Etienne
,
J.
,
Lefebvre
,
S.
,
Ray
,
N.
,
Panozzo
,
D.
,
Hornus
,
S.
,
Wang
,
C.
,
Martínez
,
J.
,
McMains
,
S.
,
Alexa
,
M.
, and
Wyvill
,
B.
,
2019
, “
CurviSlicer: Slightly Curved Slicing for 3-Axis Printers
,”
ACM Trans. Graph.
,
38
(
4
), pp.
1
11
. 10.1145/3306346.3323022
29.
Shembekar
,
A. V.
,
Yoon
,
Y. J.
,
Kanyuck
,
A.
, and
Gupta
,
S. K.
,
2019
, “
Generating Robot Trajectories for Conformal Three-Dimensional Printing Using Nonplanar Layers
,”
ASME J. Comput. Inf. Sci. Eng.
30.
Dunlavey
,
M. R.
,
1983
, “
Efficient Polygon-Filling Algorithms for Raster Displays
,”
ACM Trans. Graph.
,
2
(
4
), pp.
264
273
. 10.1145/245.248
31.
Rajan
,
V. T.
,
Srinivasan
,
V.
, and
Tarabanis
,
K. A.
,
2001
, “
The Optimal Zigzag Direction for Filling a Two-Dimensional Region
,”
Rapid Prototyp. J.
,
7
(
5
), pp.
231
241
. 10.1108/13552540110410431
32.
Park
,
S. C.
, and
Choi
,
B. K.
,
2000
, “
Tool-Path Planning for Direction-Parallel Area Milling
,”
CAD Comput. Aided Des.
,
32
(
1
), pp.
17
25
. 10.1016/S0010-4485(99)00080-9
33.
Wang
,
T.
,
2015
, “
The Research and Implement of Slicing and Path Planning Algorithm in 3D Printing Technology
,”
Heibei University of Technology
,
Tianjin, China
.
34.
Yang
,
Y.
,
Loh
,
H. T.
,
Fuh
,
J. Y. H.
, and
Wang
,
Y. G.
,
2002
, “
Equidistant Path Generation for Improving Scanning Efficiency in Layered Manufacturing
,”
Rapid Prototyp. J.
,
8
(
1
), pp.
30
37
. 10.1108/13552540210413284
35.
Ren
,
F.
,
Sun
,
Y.
, and
Guo
,
D.
,
2009
, “
Combined Reparameterization-Based Spiral Toolpath Generation for Five-Axis Sculptured Surface Machining
,”
Int. J. Adv. Manuf. Technol.
,
40
(
7–8
), pp.
760
768
. 10.1007/s00170-008-1385-9
36.
Chiu
,
W. K.
,
Yeung
,
Y. C.
, and
Yu
,
K. M.
,
2006
, “
Toolpath Generation for Layer Manufacturing of Fractal Objects
,”
Rapid Prototyp. J.
,
12
(
4
), pp.
214
221
. 10.1108/13552540610682723
37.
Jamieson
,
R.
, and
Hacker
,
H.
,
1995
, “
Direct Slicing of CAD Models for Rapid Prototyping
,”
Rapid Prototyp. J.
,
1
(
2
), pp.
4
12
. 10.1108/13552549510086826
38.
Dwivedi
,
R.
, and
Kovacevic
,
R.
,
2004
, “
Automated Torch Path Planning Using Polygon Subdivision for Solid Freeform Fabrication Based on Welding
,”
J. Manuf. Syst.
,
23
(
4
), pp.
278
291
. 10.1016/S0278-6125(04)80040-2
39.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2014
, “
A Tool-Path Generation Strategy for Wire and Arc Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
73
(
1–4
), pp.
173
183
. 10.1007/s00170-014-5808-5
40.
Jin
,
G. Q.
,
Li
,
W. D.
, and
Gao
,
L.
,
2013
, “
An Adaptive Process Planning Approach of Rapid Prototyping and Manufacturing
,”
Robot. Comput. Integr. Manuf.
,
29
(
1
), pp.
23
38
. 10.1016/j.rcim.2012.07.001
41.
Lin
,
Z.
,
Fu
,
J.
,
Shen
,
H.
,
Gan
,
W.
, and
Yue
,
S.
,
2015
, “
Tool Path Generation for Multi-Axis Freeform Surface Finishing With the LKH TSP Solver
,”
CAD Comput. Aided Des.
,
69
, pp.
51
61
. 10.1016/j.cad.2015.07.002
42.
Jin
,
Y.
,
He
,
Y.
, and
Du
,
J.
,
2017
, “
A Novel Path Planning Methodology for Extrusion-Based Additive Manufacturing of Thin-Walled Parts
,”
Int. J. Comput. Integr. Manuf.
,
30
(
12
), pp.
1301
1315
. 10.1080/0951192X.2017.1307526
43.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
A Practical Path Planning Methodology for Wire and Arc Additive Manufacturing of Thin-Walled Structures
,”
Robot. Comput. Integr. Manuf.
,
34
, pp.
8
19
. 10.1016/j.rcim.2015.01.003
44.
Jin
,
Y.
,
Du
,
J.
, and
He
,
Y.
,
2017
, “
Optimization of Process Planning for Reducing Material Consumption in Additive Manufacturing
,”
J. Manuf. Syst.
,
44
, pp.
65
78
. 10.1016/j.jmsy.2017.05.003
45.
Zhao
,
D.
,
Guo
,
W.
,
Zhang
,
B.
, and
Gao
,
F.
,
2018
, “
3D Sand Mould Printing: A Review and a New Approach
,”
Rapid Prototyp. J.
,
24
(
2
), pp.
285
300
. 10.1108/RPJ-05-2016-0088
46.
Zhao
,
G.
,
Ma
,
G.
,
Feng
,
J.
, and
Xiao
,
W.
,
2018
, “
Nonplanar Slicing and Path Generation Methods for Robotic Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
3149
3159
. 10.1007/s00170-018-1772-9
47.
Lim
,
S.
,
Buswell
,
R. A.
,
Valentine
,
P. J.
,
Piker
,
D.
,
Austin
,
S. A.
, and
De Kestelier
,
X.
,
2016
, “
Modelling Curved-Layered Printing Paths for Fabricating Large-Scale Construction Components
,”
Addit. Manuf.
,
12
, pp.
216
230
. 10.1016/j.addma.2016.06.004
48.
Kerschbaumer
,
M.
,
Ernst
,
G.
, and
O’Leary
,
P.
,
2005
, “
Tool Path Generation for 3D Laser Cladding Using Adaptive Slicing Technology
,”
24th International Congress on Applications of Lasers and Electro-Optics
,
Miami, FL
,
Oct. 31–Nov. 3
, pp.
310
319
.
49.
Yuk
,
H.
, and
Zhao
,
X.
,
2018
, “
A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks
,”
Adv. Mater.
,
30
(
6
), p.
1704028
. 10.1002/adma.201704028
50.
Diegel
,
O.
,
Singamneni
,
S.
,
Huang
,
B.
, and
Gibson
,
I.
,
2011
, “Getting Rid of the Wires: Curved Layer Fused Deposition Modeling in Conductive Polymer Additive Manufacturing,”
Key Eng. Mater.
,
467–469
, pp.
662
667
. 10.4028/www.scientific.net/KEM.467-469.662
51.
Jin
,
Y. A.
,
Li
,
H.
,
He
,
Y.
, and
Fu
,
J. Z.
,
2015
, “
Quantitative Analysis of Surface Profile in Fused Deposition Modelling
,”
Addit. Manuf.
,
8
, pp.
142
148
. 10.1016/j.addma.2015.10.001
52.
Hodgson
,
G.
,
Ranelluci
,
A.
, and
Moe
,
J.
,
2016
, “
Slic3r Manual—Flow Math
,”
Aleph Objects
, p.
1
, http://manual.slic3r.org/advanced/flow-math, Accessed July 1, 2018.
53.
Turner
,
B. N.
,
Strong
,
R.
, and
Gold
,
S. A.
,
2014
, “
A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling
,”
Rapid Prototyp. J.
,
20
(
3
), pp.
192
204
. 10.1108/RPJ-01-2013-0012
54.
Ahn
,
D.
,
Kweon
,
J. H.
,
Kwon
,
S.
,
Song
,
J.
, and
Lee
,
S.
,
2009
, “
Representation of Surface Roughness in Fused Deposition Modeling
,”
J. Mater. Process. Technol.
,
209
(
15–16
), pp.
5593
5600
. 10.1016/j.jmatprotec.2009.05.016
55.
Klosterman
,
D. A.
,
Chartoff
,
R. P.
,
Osborne
,
N. R.
,
Graves
,
G. A.
,
Lightman
,
A.
,
Han
,
G.
,
Bezeredi
,
A.
, and
Rodrigues
,
S.
,
1999
, “
Development of a Curved Layer LOM Process for Monolithic Ceramics and Ceramic Matrix Composites
,”
Rapid Prototyp. J.
,
5
(
2
), pp.
61
71
. 10.1108/13552549910267362
56.
Piegl
,
L. A.
, and
Tiller
,
W.
,
1999
, “
Computing Offsets of NURBS Curves and Surfaces
,”
CAD Comput. Aided Des.
,
31
(
2
), pp.
147
156
. 10.1016/S0010-4485(98)00066-9
57.
Farouki
,
R. T.
,
1985
, “
Exact Offset Procedures for Simple Solids
,”
Comput. Aided Geom. Des.
,
2
(
4
), pp.
257
279
. 10.1016/S0167-8396(85)80002-9
58.
Grutle
,
Ø. K.
,
2015
, “
5-Axis 3D Printer
,”
Master’s Thesis
,
University of Oslo
,
Oslo, Norway
.
59.
Song
,
X.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2015
, “
Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021005
. 10.1115/1.4028897
You do not currently have access to this content.