Abstract

In this paper, the performance of the particle swarm optimization(PSO) algorithm is studied from the system dynamics point of view. The dynamics of the particles in PSO algorithm are considered as second-order systems. Depending on the selections of the parameters, the second-order systems have over-damped, critically damped, underdamped, or undamped responses. Different responses give the algorithm different types of performance. Therefore, in this paper, we derive the conditions for parameters in the PSO algorithm such that the particles have different responses. The exploration and exploitation of PSO are discussed numerically. Moreover, due to the fact that the discrete model of PSO is converted from a continuous model by certain sampling ratio, the sampling ratio variable is introduced to the PSO algorithm. With different sampling ratios, the stability region of the PSO algorithm is increased and the performance of the algorithm is changed. Numerical examples are provided to demonstrate the performance of the PSO algorithm with different selections of the parameters.

References

1.
Zhu
,
L.
,
Feng
,
R.
,
Li
,
X.
,
Xi
,
J.
, and
Wei
,
X.
,
2019
, “
A Tree-Shaped Support Structure for Additive Manufacturing Generated by Using a Hybrid of Particle Swarm Optimization and Greedy Algorithm
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041010
.
2.
Abido
,
M. A.
,
2002
, “
Optimal Design of Power-System Stabilizers Using Particle Swarm Optimization
,”
IEEE Trans. Energy Convers.
,
17
(
3
), pp.
406
413
. 10.1109/TEC.2002.801992
3.
Shayeghi
,
H.
,
Safari
,
A.
, and
Shayanfar
,
H. A.
,
2010
, “
PSS and TCSC Damping Controller Coordinated Design Using PSO in Multi-Machine Power System
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2930
2937
. 10.1016/j.enconman.2010.06.034
4.
AlRashidi
,
M. R.
, and
El-Hawary
,
M. E.
,
2008
, “
A Survey of Particle Swarm Optimization Applications in Electric Power Systems
,”
IEEE Trans. Evol. Comput.
,
13
(
4
), pp.
913
918
. 10.1109/TEVC.2006.880326
5.
He
,
W.
,
Ge
,
W.
,
Li
,
Y.
,
Liu
,
Y.-J.
,
Yang
,
C.
, and
Sun
,
C.
,
2017
, “
Model Identification and Control Design for a Humanoid Robot
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
47
(
1
), pp.
45
57
. 10.1109/TSMC.2016.2557227
6.
Fu
,
Y.
,
Ding
,
M.
,
Zhou
,
C.
, and
Hu
,
H.
,
2013
, “
Route Planning for Unmanned Aerial Vehicle (uav) on the Sea Using Hybrid Differential Evolution and Quantum-Behaved Particle Swarm Optimization
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
43
(
6
), pp.
1451
1465
. 10.1109/TSMC.2013.2248146
7.
Zou
,
R.
,
Kalivarapu
,
V.
,
Winer
,
E.
,
Oliver
,
J.
, and
Bhattacharya
,
S.
,
2015
, “
Particle Swarm Optimization-Based Source Seeking
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
3
), pp.
865
875
. 10.1109/TASE.2015.2441746
8.
Lu
,
Y.
,
Yan
,
D.
,
Zhang
,
J.
, and
Levy
,
D.
,
2015
, “
A Variant With a Time Varying Pid Controller of Particle Swarm Optimizers
,”
Inform. Sci.
,
297
, pp.
21
49
. 10.1016/j.ins.2014.11.017
9.
Tang
,
Y.
,
Wang
,
Z.
, and
Fang
,
J.-A.
,
2011
, “
Controller Design for Synchronization of an Array of Delayed Neural Networks Using a Controllable Probabilistic Pso
,”
Inform. Sci.
,
181
(
20
), pp.
4715
4732
. 10.1016/j.ins.2010.09.025
10.
Tran
,
A.
,
Sun
,
J.
,
Furlan
,
J. M.
,
Pagalthivarthi
,
K. V.
,
Visintainer
,
R. J.
, and
Wang
,
Y.
,
2019
, “
pBO-2GP-3B: A Batch Parallel Known/Unknown Constrained Bayesian Optimization With Feasibility Classification and Its Applications in Computational Fluid Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
827
852
. 10.1016/j.cma.2018.12.033
11.
Kandasamy
,
K.
,
Krishnamurthy
,
A.
,
Schneider
,
J.
, and
Póczos
,
B.
,
2018
, “
Parallelised Bayesian Optimisation Via Thompson Sampling
,”
International Conference on Artificial Intelligence and Statistics
,
Playa Blanca, Lanzarote, Canary Islands
,
Apr. 9–11
, pp.
133
142
.
12.
Dorigo
,
M.
, and
Birattari
,
M.
,
2010
,
Ant Colony Optimization
,
Springer
,
New York
, pp.
36
39
.
13.
Yang
,
X. S.
,
2010
,
A New Metaheuristic Bat-Inspired Algorithm
,
J. R.
González
,
D. A.
Pelta
,
C. C.
Germán
, and
T. N.
Krasnogor
, eds.,
Springer
,
Berlin
, pp.
65
74
.
14.
Zhang
,
H.
, and
Hui
,
Q.
,
2017
, “
Cooperative Bat Searching Algorithm: A Combined Perspective From Multiagent Coordination and Swarm Intelligence
,”
13th IEEE Conference on Automation Science and Engineering (CASE)
,
Xian, China
,
Aug. 20–23
, pp.
1362
1367
.
15.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of IEEE International Conference on Neural Networks
,
Australia, Perth, Western Australia
,
Nov. 27–Dec. 1
.
16.
Martínez
,
J. F.
, and
Gonzalo
,
E. G.
,
2009
, “
The PSO Family: Deduction, Stochastic Analysis and Comparison
,”
Swarm Intell.
,
3
(
4
), p.
245
. 10.1007/s11721-009-0034-8
17.
Zhang
,
H.
, and
Hui
,
Q.
,
2017
, “
Parallel Multiagent Coordination Optimization Algorithm: Implementation, Evaluation, and Applications
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
2
), pp.
984
995
. 10.1109/TASE.2016.2544749
18.
Trelea
,
I. C.
,
2003
, “
The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection
,”
Inf. Process. Lett.
,
85
(
6
), pp.
317
325
. 10.1016/S0020-0190(02)00447-7
19.
Van den Bergh
,
F.
, and
Engelbrecht
,
A. P.
,
2006
, “
A Study of Particle Swarm Optimization Particle Trajectories
,”
Inf. Sci.
,
176
(
8
), pp.
937
971
. 10.1016/j.ins.2005.02.003
20.
Chatterjee
,
S.
,
Goswami
,
D.
,
Mukherjee
,
S.
, and
Das
,
S.
,
2014
, “
Behavioral Analysis of the Leader Particle During Stagnation in a Particle Swarm Optimization Algorithm
,”
Inform. Sci.
,
279
, pp.
18
36
. 10.1016/j.ins.2014.03.098
21.
Jiang
,
M.
,
Luo
,
Y. P.
, and
Yang
,
S. Y.
,
2007
, “
Stochastic Convergence Analysis and Parameter Selection of the Standard Particle Swarm Optimization Algorithm
,”
Inf. Process. Lett.
,
102
(
1
), pp.
8
16
. 10.1016/j.ipl.2006.10.005
22.
Rapaić
,
M. R.
, and
Kanović
,
Ž.
,
2009
, “
Time-Varying PSO-Convergence Analysis, Convergence-Related Parameterization and New Parameter Adjustment Schemes
,”
Inf. Process. Lett.
,
109
(
11
), pp.
548
552
. 10.1016/j.ipl.2009.01.021
23.
Cleghorn
,
C. W.
, and
Engelbrecht
,
A. P.
,
2014
, “
A Generalized Theoretical Deterministic Particle Swarm Model
,”
Swarm Intell.
,
8
(
1
), pp.
35
59
. 10.1007/s11721-013-0090-y
24.
Bonyadi
,
M. R.
, and
Michalewicz
,
Z.
,
2016
, “
Stability Analysis of the Particle Swarm Optimization Without Stagnation Assumption
,”
IEEE Trans. Evol. Comput.
,
20
(
5
), pp.
814
819
. 10.1109/TEVC.2015.2508101
25.
Cleghorn
,
C. W.
, and
Engelbrecht
,
A. P.
,
2015
, “
Particle Swarm Variants: Standardized Convergence Analysis
,”
Swarm Intell.
,
9
(
2–3
), pp.
177
203
. 10.1007/s11721-015-0109-7
26.
Kadirkamanathan
,
V.
,
Selvarajah
,
K.
, and
Fleming
,
P. J.
,
2006
, “
Stability Analysis of the Particle Dynamics in Particle Swarm Optimizer
,”
IEEE Trans. Evol. Comput.
,
10
(
3
), pp.
245
255
. 10.1109/TEVC.2005.857077
27.
Cleghorn
,
C. W.
, and
Engelbrecht
,
A. P.
,
2018
, “
Particle Swarm Stability: A Theoretical Extension Using the Non-Stagnate Distribution Assumption
,”
Swarm Intell.
,
12
(
1
), pp.
1
22
. 10.1007/s11721-017-0141-x
28.
Yuan
,
Q.
, and
Yin
,
G.
,
2015
, “
Analyzing Convergence and Rates of Convergence of Particle Swarm Optimization Algorithms Using Stochastic Approximation Methods
,”
IEEE Trans. Autom. Control
,
60
(
7
), pp.
1760
1773
. 10.1109/TAC.2014.2381454
29.
Poli
,
R.
,
2009
, “
Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers During Stagnation
,”
IEEE Trans. Evol. Comput.
,
13
(
4
), pp.
712
721
. 10.1109/TEVC.2008.2011744
30.
Palm
,
W. J.
,
2005
,
System Dynamics
,
McGraw-Hill Higher Education
,
New York
.
31.
Li
,
X.
,
Tang
,
K.
,
Omidvar
,
M. N.
,
Yang
,
Z.
,
Qin
,
K.
, and
China
,
H.
,
2013
, “
Benchmark Functions for the Cec 2013 Special Session and Competition on Large-Scale Global Optimization
,”
Gene
,
7
(
33
), pp.
1
23
.
You do not currently have access to this content.