Abstract

In graph-based function models, the function verbs and flow nouns are usually chosen from predefined vocabularies. The vocabulary class definitions, combined with function modeling grammars defined at various levels of formalism, enable function-based reasoning. However, the text written in plain English for the names of the functions and flows is presently not exploited for formal reasoning. This paper presents a formalism (representation and reasoning) to support semantic and physics-based reasoning on the information hidden in the plain-English flow terms, especially for automatically decomposing black box function models, and to generate multiple design alternatives. First, semantic reasoning infers the changes of flow types, flow attributes, and the direction of those changes between the input and output flows attached to the black box. Then, a representation of qualitative physics is used to determine the material and energy exchanges between the flows and the function features needed to achieve them. Finally, a topological reasoning is used to infer multiple options of composing those function features into topologies and to thus generate multiple alternative decompositions of the functional black box. The data representation formalizes flow phases, flow attributes, qualitative value scales for the attributes, and qualitative physics laws. An eight-step algorithm manipulates these data for reasoning. This paper shows four validation case studies to demonstrate the workings of this formalism.

References

1.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. H.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer-Verlag
,
London
.
2.
Otto
,
K.
, and
Wood
,
K. L.
,
2001
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
.
3.
Stone
,
R. B.
, and
Wood
,
K. L.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
. 10.1115/1.1289637
4.
Sen
,
C.
,
2016
, “
Feature-Based Computer Modeling and Reasoning on Mechanical Functions
,”
Proceedings of the IDETC/CIE, 1B
,
Charlotte, NC
,
Aug. 21–24
, p.
V01BT02A008
,
ASME Paper No. DETC2016-60353
.
5.
Fadel
,
G. M.
, and
Kirschman
,
C. F.
,
1998
, “
Classifying Functions for Mechanical Design
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
475
482
.10.1115/1.2829176
6.
Collins
,
J. A.
,
Hagan
,
B. T.
, and
Bratt
,
H. M.
,
1976
, “
The Failure-Experience Matrix—A Useful Design Tool
,”
ASME J. Manuf. Sci. Eng. Trans. ASME
,
98
(
75
), pp.
1074
1079
. 10.1115/1.3439009
7.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
. 10.1007/s00163-001-0008-3
8.
Nagel
,
R. L.
,
Vucovich
,
J. P.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2007
, “
Signal Flow Grammar From the Functional Basis
,”
International Conference on Engineering Design, ICED’07, Cite Des Sciences Et De L’Industrie
,
Paris, France
,
Aug. 28–31
.
9.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2013
, “
Physics-Based Reasoning in Conceptual Design Using a Formal Representation of Function Structure Graphs
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
1
), p.
011008
. 10.1115/1.4023488
10.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2013
, “
A Formal Representation of Function Structure Graphs for Physics-Based Reasoning
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
2
), p.
021001
. 10.1115/1.4023167
11.
Kitamura
,
Y.
,
Kashiwase
,
M.
,
Fuse
,
M.
, and
Mizoguchi
,
R.
,
2004
, “
Deployment of an Ontological Framework of Functional Design Knowledge
,”
Adv. Eng. Inform.
,
18
(
2
), pp.
115
127
. 10.1016/j.aei.2004.09.002
12.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2014
, “The Function-Behaviour-Structure Ontology of Design,”
An Anthology of Theories and Models of Design
,
A.
Chakrabarti
, and
L.
Blessing
, eds.,
Springer
,
London
, pp.
263
283
.
13.
Bohm
,
M. R. R.
, and
Stone
,
R. B. B.
,
2004
, “
Product Design Support: Exploring a Design Repository System
,”
ASME International Mechanical Engineering Congress and Exposition, Computers and Information in Engineering
,
Anaheim, CA
,
Nov. 13–19
, pp.
55
65
,
ASME Paper No. IMECE2004-61746
.
14.
Bohm
,
M. R.
,
Stone
,
R. B.
,
Simpson
,
T. W.
, and
Steva
,
E. D.
,
2008
, “
Introduction of a Data Schema to Support a Design Repository
,”
Comput. Aided Des.
,
40
(
7
), pp.
801
811
. 10.1016/j.cad.2007.09.003
15.
Bohm
,
M. R.
,
Stone
,
R. B.
, and
Szykman
,
S.
,
2005
, “
Enhancing Virtual Product Representations for Advanced Design Repository Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
4
), pp.
360
372
. 10.1115/1.1884618
16.
Ullman
,
D. G.
,
1992
,
The Mechanical Design Process
,
McGraw-Hill
,
New York
.
17.
Jansson
,
D. G.
, and
Smith
,
S. M.
,
1991
, “
Design Fixation
,”
Des. Stud.
,
12
(
1
), pp.
3
11
. 10.1016/0142-694X(91)90003-F
18.
Umeda
,
Y.
,
Ishii
,
M.
,
Yoshioka
,
M.
,
Shimomura
,
Y.
, and
Tomiyama
,
T.
,
1996
, “
Supporting Conceptual Design Based on the Function-Behavior-State Modeler
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
(
4
), pp.
275
288
. 10.1017/S0890060400001621
19.
Umeda
,
Y.
, and
Tomiyama
,
T.
,
1995
, “
FBS Modeling: Modeling Scheme of Function for Conceptual Design
,”
Proceedings of the 9th International Workshop on Qualitative Reasoning
,
Amsterdam, The Netherlands
,
May 16–19
, pp.
271
278
.
20.
Bohm
,
M. R.
, and
Stone
,
R. B.
,
2004
, “
Representing Functionality to Support Reuse: Conceptual and Supporting Functions
,”
Proceedings of the IDETC/CIE
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, pp.
411
419
,
ASME Paper No. DETC2004-57693
.
21.
Sridharan
,
P.
, and
Campbell
,
M. I.
,
2005
, “
A Study on the Grammatical Construction of Function Structures
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
3
), pp.
139
160
. 10.1017/S0890060405050110
22.
Kurtoglu
,
T.
,
Campbell
,
M. I.
,
Gonzalez
,
J.
,
Bryant
,
C. R.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2005
, “
Capturing Empirically Derived Design Knowledge for Creating Conceptual Design Configurations
,”
Proceedings of the IDETC/CIE
,
Long Beach, CA
,
Sept. 24–28
,
ASME Paper No. DETC2005-84405
.
23.
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2009
, “
Automated Synthesis of Electromechanical Design Configurations From Empirical Analysis of Function to Form Mapping
,”
J. Eng. Des.
,
20
(
1
), pp.
83
104
. 10.1080/09544820701546165
24.
Vucovich
,
J.
,
Bhardwaj
,
N.
,
Ho
,
H.-H.
,
Ramakrishna
,
M.
,
Thakur
,
M.
, and
Stone
,
R.
,
2006
, “
Concept Generation Algorithms for Repository-Based Early Design
,”
Proceedings of the IDETC/CIE
,
Philadelphia, PA
,
Sept. 10–13
, pp.
239
249
,
ASME Paper No. DETC2006-99466
.
25.
Bryant
,
C. R.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2005
, “
Concept Generation From the Functional Basis of Design
,”
International Conference on Engineering Design, ICED05
,
Melbourne, Australia
,
Aug. 15–18, 2005
.
26.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Stock
,
M. E.
,
2005
, “
Linking Product Functionality to Historic Failures to Improve Failure Analysis in Design
,”
Res. Eng. Des.
,
16
(
1–2
), pp.
96
108
. 10.1007/s00163-005-0005-z
27.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Van Wie
,
M.
,
2004
, “
The Function-Failure Design Method
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
397
407
. 10.1115/1.1862678
28.
Sierla
,
S.
,
Tumer
,
I.
,
Papakonstantinou
,
N.
,
Koskinen
,
K.
, and
Jensen
,
D.
,
2012
, “
Early Integration of Safety to the Mechatronic System Design Process by the Functional Failure Identification and Propagation Framework
,”
Mechatronics
,
22
(
2
), pp.
137
151
. 10.1016/j.mechatronics.2012.01.003
29.
Van Bossuyt
,
D.
,
Hoyle
,
C.
,
Tumer
,
I. Y.
, and
Dong
,
A.
,
2012
, “
Risk Attitudes in Risk-Based Design: Considering Risk Attitude Using Utility Theory in Risk-Based Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
26
(
4
), pp.
393
406
. 10.1017/S0890060412000261
30.
McAdams
,
D. A.
, and
Wood
,
K. L.
,
2002
, “
A Quantitative Similarity Metric for Design-by-Analogy
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
173
182
. 10.1115/1.1475317
31.
Nagel
,
R. L.
,
Stone
,
R. B.
,
Hutcheson
,
R.
, and
McAdams
,
D. A.
,
2008
, “
Function Design Framework (FDF): Integrated Process and Function Modeling for Complex Systems
,”
Proceedings of the IDETC/CIE, 4
,
Brooklyn, NY
,
Aug. 3–6
, pp.
273
286
,
ASME Paper No. DETC2008/DTM-49369
.
32.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M.
,
2010
,
Fundamentals of Engineering Thermodynamics
,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
33.
Sen
,
C.
,
2011
, “
A Formal Representation of Mechanical Functions to Support Physics-Based Computational Reasoning in Early Mechanical Design
,”
Ph.D. dissertation
,
Clemson University
,
Clemson, SC
.
34.
Sen
,
C.
,
Summers
,
J. D.
, and
Mao
,
X.
,
2019
, “
A Physics-Based Formal Vocabulary of Energy Verbs for Function Modeling
,”
Proceedings of the IDETC/CIE
,
Anaheim, CA
,
Aug. 18–21
, pp.
1
10
,
ASME Paper No. DETC2019-98502
.
35.
Narasimhon
,
A. V. L.
,
Mao
,
X.
,
Chowdhury
,
A.
, and
Sen
,
C.
,
2019
, “
Physics-Based Function Features for a Set of Material-Processing Verbs
,”
Proceedings of the IDETC/CIE
,
Anaheim, CA
,
Aug. 18–21
, pp.
1
10
,
ASME Paper No. DETC2019-98343
.
36.
Domingue
,
J.
,
Fensel
,
D.
, and
Hendler
,
J.
,
2013
,
Handbook of Semantic Web Technologies
,
Springer-Verlag
,
Berlin
.
37.
Tiropanis
,
T.
,
Davis
,
H. C.
,
Cerri
,
S. A.
,
Time
,
S. R.
, and
Matching
,
S. S.
,
2012
, “Semantic Technologies and Learning,”
Encyclopedia of the Sciences of Learning
,
N. M.
Seel
, ed.,
Springer US
,
Boston, MA
, pp.
3029
3032
.
38.
Assel
,
M.
,
Cheptsov
,
A.
,
Celino
,
I.
,
Dell’Aglio
,
D.
,
Bradeško
,
L.
,
Witbrock
,
M.
,
Della Valle
,
E.
,
Assel
,
M.
,
Gallizo
,
G.
,
Celino
,
I.
,
Dell’Aglio
,
D.
,
Bradeško
,
L.
,
Witbrock
,
M.
, and
Della Valle
,
E.
,
2011
, “
Large Knowledge Collider—A Service-Oriented Platform for Large-Scale Semantic Reasoning
,”
Proceedings of WIMS
,
Sogndal, Norway
,
May 25–27
, Article No. 41.
39.
Chen
,
Y.
,
Liu
,
Z. L.
, and
Xie
,
Y. B.
,
2012
, “
A Knowledge-Based Framework for Creative Conceptual Design of Multi-Disciplinary Systems
,”
Comput. Aided Des.
,
44
(
2
), pp.
146
153
. 10.1016/j.cad.2011.02.016
40.
Yuan
,
L.
,
Liu
,
Y.
,
Lin
,
Y.
,
Zhao
,
J.
, and
Yuan
,
L.
,
2017
, “
An Automated Functional Decomposition Method Based on Morphological Changes of Material Flows Morphological Changes of Material Flows
,”
J. Eng. Des.
,
28
(
1
), pp.
47
75
. 10.1080/09544828.2016.1258459
41.
Chen
,
Y.
,
Zhao
,
M.
,
Liu
,
Y.
, and
Xie
,
Y.
,
2016
, “
A Formal Functional Representation Methodology for Conceptual Design of Material Flows-Processing Devices
,”
Artif. Intell. Eng. Des.
,
30
(
4
), pp.
353
366
.10.1017/s0890060416000342
42.
Yuan
,
L.
,
Liu
,
Y.
,
Sun
,
Z.
,
Cao
,
Y.
, and
Qamar
,
A.
,
2016
, “
A Hybrid Approach for the Automation of Functional Decomposition in Conceptual Design
,”
J. Eng. Des.
,
27
(
4–6
), pp.
333
360
. 10.1080/09544828.2016.1146237
43.
Brickley
,
D.
, and
Guha
,
R. V.
,
2004
, “
RDF Vocabulary Description Language 1.0: RDF Schema,” W3C (February) [Online]
, http://www.w3.org/TR/rdf-schema/, Accessed March 2, 2018.
44.
Smith
,
M. K.
,
Welty
,
C.
, and
McGuinness
,
D. L.
,
2004
, “
OWL Web Ontology Language Guide
,”
W3C Recomm
, pp.
1
46
[Online], http://www.w3.org/TR/owl-guide/, Accessed March 2, 2018.
45.
Arch-Int
,
N.
, and
Arch-Int
,
S.
,
2013
, “
Semantic Ontology Mapping for Interoperability of Learning Resource Systems Using a Rule-Based Reasoning Approach
,”
Expert Syst. Appl.
,
40
(
18
), pp.
7428
7443
. 10.1016/j.eswa.2013.07.027
46.
Smith
,
B.
,
2004
, “
Beyond Concepts: Ontology as Reality Representation
,”
International Conference on Formal Ontology and Information Systems
,
Turin, Italy
,
Nov. 4–6
.
47.
Maarala
,
A. I.
,
Su
,
X.
, and
Riekki
,
J.
,
2017
, “
Semantic Reasoning for Context-Aware Internet of Things Applications
,”
IEEE Internet Things J.
,
4
(
2
), pp.
461
473
. 10.1109/JIOT.2016.2587060
48.
Ahmed
,
S.
,
Kim
,
S.
, and
Wallace
,
K. M.
,
2007
, “
A Methodology for Creating Ontologies for Engineering Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
2
), pp.
132
140
. 10.1115/1.2720879
49.
Kitamura
,
Y.
,
Sano
,
T.
,
Namba
,
K.
, and
Mizoguchi
,
R.
,
2002
, “
A Functional Concept Ontology and Its Application to Automatic Identification of Functional Structures
,”
Adv. Eng. Inform.
,
16
(
2
), pp.
145
163
. 10.1016/S1474-0346(02)00006-X
50.
Bryant
,
C.
, and
Stone
,
R.
,
2007
, “
A Function-Based Component Ontology for Systems Design
,”
International Conference on Engineering Design, ICED’07, Cite Des Sciences Et De L’Industrie
,
Paris, France
,
Aug. 28–31
.
51.
Forbus
,
Kenneth D.
,
1988
,
"Qualitative Physics: Past, Present, and Future," Exploring Artificial Intelligence
,
Morgan Kaufmann
,
San Francisco, CA
, pp.
239
296
.
52.
Forbus
,
K. D.
,
1993
, “
Qualitative Process Theory: Twelve Years After
,”
Artif. Intell.
,
59
(
1–2
), pp.
115
123
. 10.1016/0004-3702(93)90177-D
53.
Sen
,
C.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2011
, “
A Protocol to Formalise Function Verbs to Support Conservation-Based Model Checking
,”
J. Eng. Des.
,
22
(
11–12
), pp.
765
788
. 10.1080/09544828.2011.603295
54.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
2010
,
Fundamentals of Engineering Thermodynamics
,
John Wiley & Sons. Inc.
,
Hoboken, NJ
.
55.
Toutanova
,
K.
,
Klein
,
D.
,
Manning
,
C. D.
, and
Singer
,
Y.
,
2003
, “
Feature-Rich Part-of-Speech Tagging With a Cyclic Dependency Network
,”
Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology—NAACL’03
,
Edmonton, Canada
,
May 27–June 1
, pp.
173
180
.
56.
Toutanova
,
K.
, and
Manning
,
C. D.
,
2000
, “
Enriching the Knowledge Sources Used in a Maximum Entropy
,”
Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora
,
Hong Kong, China
,
Oct. 7–8
, pp.
63
70
.
57.
Likert
,
R.
,
1932
, “
A Technique for the Measurement of Attitudes
,”
Arch. Psychol.
,
22
(
140
), pp.
5
55
.
58.
Simon
,
T. W.
,
1995
,
Democracy and Social Injustice: Law, Politics, and Philosophy
,
Rowman & Littlefield
,
Lanham, MD
.
59.
Iyengar
,
S. S.
, and
Lepper
,
M. R.
,
2000
, “
When Choice Is Demotivating: Can One Desire Too Much of a Good Thing?
,”
J. Pers. Soc. Psychol.
,
79
(
6
), pp.
995
1006
. 10.1037/0022-3514.79.6.995
60.
Zadeh
,
L. A.
,
1965
, “
Fuzzy Sets
,”
Inf. Control
,
8
(
3
), pp.
338
353
. 10.1016/S0019-9958(65)90241-X
61.
Zimmermann
,
H.-J.
,
2010
, “
Fuzzy Set Theory
,”
Wiley Interdiscip. Rev. Comput. Stat.
,
2
(
3
), pp.
317
332
. 10.1002/wics.82
62.
Sen
,
C.
,
Mukhopadhyay
,
A.
,
Fields
,
J.
, and
Ameri
,
F.
,
2014
, “
An Approach for Measuring Information Content of Textual Engineering Requirements Using a Form-Neutral Representation
,”
Proceedings of the IDETC/CIE, 1B
,
Buffalo, NY
,
Aug. 17–20
, p.
V01BT02A006
,
ASME Paper No. DETC2014-34438
.
63.
Borutzky
,
W.
,
2011
,
Bond Graph Modelling of Engineering Systems
,
Springer US
,
New York
.
64.
Caldwell
,
B. W.
,
Thomas
,
J. E.
,
Sen
,
C.
,
Mocko
,
G. M.
, and
Summers
,
J. D.
,
2012
, “
The Effects of Language and Pruning on Function Structure Interpretability
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061001
. 10.1115/1.4006442
65.
Caldwell
,
B. W.
, and
Mocko
,
G. M.
,
2008
, “
Towards Rules for Functional Composition
,”
Proceedings of the IDETC/CIE
,
Brooklyn, NY
,
Aug. 3–6, 2016
, pp.
319
328
,
ASME Paper No. DETC2008-49904
.
You do not currently have access to this content.