Abstract

Smart manufacturing and industrial Internet of things (IoT) have transformed the maintenance management concept from the conventional perspective of being reactive to being predictive. Recent advancements in this regard has resulted in development of effective prognostic health management (PHM) frameworks, which coupled with deep learning architectures have produced sophisticated techniques for remaining useful life (RUL) estimation. Accurately predicting the RUL significantly empowers the decision-making process and allows deployment of advanced maintenance strategies to improve the overall outcome in a timely fashion. In light of this, the paper proposes a novel noisy deep learning architecture consisting of multiple models designed in parallel, referred to as noisy and hybrid deep architecture for remaining useful life estimation (NBLSTM). The proposed NBLSTM is designed by integration of two parallel noisy deep architectures, i.e., a noisy convolutional neural network (CNN) to extract spatial features and a noisy bidirectional long short-term memory (BLSTM) to extract temporal information learning the dependencies of input data in both forward and backward directions. The two paths are connected through a fusion center consisting of fully connected multilayers, which combines their outputs and forms the target predicted RUL. To improve the robustness of the model, the NBLSTM is trained based on noisy input signals leading to significantly robust and enhanced generalization behavior. Through 100 Monte Carlo simulation runs performed under three different signal-to-noise ratio (SNR) values, it can be noted that utilization of the noisy training enhanced the results by reducing the standard deviation (std) between 9% and 67% across different settings in terms of the root-mean-square error (RMSE) and between 21% and 63% in terms of the score value. The proposed NBLSTM model is evaluated and tested based on the commercial modular aero-propulsion system simulation (C-MAPSS) dataset provided by NASA, illustrating state-of-the-art results in comparison with its counterparts.

References

1.
Huang
,
Z.
,
Xu
,
Z.
,
Ke
,
X.
,
Wang
,
W.
, and
Sun
,
Y.
,
2017
, “
Remaining Useful Life Prediction for An Adaptive Skew-Wiener Process Model
,”
Mech. Syst. Sig. Process.
,
87
, pp.
294
306
. 10.1016/j.ymssp.2016.10.027
2.
Chen
,
C.
,
Zhang
,
B.
,
Vachtsevanos
,
G.
, and
Orchard
,
M.
,
2010
, “
Machine Condition Prediction Based on Adaptive Neuro–Fuzzy and High-Order Particle Filtering
,”
IEEE Trans. Ind. Electron.
,
58
(
9
), pp.
4353
4364
. 10.1109/TIE.2010.2098369
3.
Tian
,
Z.
,
Wong
,
L.
, and
Safaei
,
N.
,
2010
, “
A Neural Network Approach for Remaining Useful Life Prediction Utilizing Both Failure and Suspension Histories
,”
Mech. Syst. Sig. Process.
,
24
(
5
), pp.
1542
1555
. 10.1016/j.ymssp.2009.11.005
4.
Hu
,
C.
,
Youn
,
B. D.
,
Wang
,
P.
, and
Yoon
,
J. T.
,
2012
, “
Ensemble of Data-Driven Prognostic Algorithms for Robust Prediction of Remaining Useful Life
,”
Reliab. Eng. Syst. Saf.
,
103
, pp.
120
135
. 10.1016/j.ress.2012.03.008
5.
Liu
,
K.
,
Gebraeel
,
N. Z.
, and
Shi
,
J.
,
2013
, “
A Data-Level Fusion Model for Developing Composite Health Indices for Degradation Modeling and Prognostic Analysis
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
652
664
. 10.1109/TASE.2013.2250282
6.
Lim
,
P.
,
Goh
,
C. K.
,
Tan
,
K. C.
, and
Dutta
,
P.
,
2014
, “
Estimation of Remaining Useful Life Based on Switching Kalman Filter Neural Network Ensemble
,”
Rolls Royce
,
Singapore
,
Technical Report
.
7.
Kan
,
M. S.
,
Tan
,
A. C.
, and
Mathew
,
J.
,
2015
, “
A Review on Prognostic Techniques for Non-Stationary and Non-Linear Rotating Systems
,”
Mech. Syst. Sig. Process.
,
62
, pp.
1
20
. 10.1016/j.ymssp.2015.02.016
8.
Yin
,
S.
,
Li
,
X.
,
Gao
,
H.
, and
Kaynak
,
O.
,
2014
, “
Data-Based Techniques Focused on Modern Industry: An Overview
,”
IEEE Trans. Ind. Electron.
,
62
(
1
), pp.
657
667
. 10.1109/TIE.2014.2308133
9.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Sig. Process.
,
20
(
7
), pp.
1483
1510
. 10.1016/j.ymssp.2005.09.012
10.
Widodo
,
A.
, and
Yang
,
B.-S.
,
2007
, “
Support Vector Machine in Machine Condition Monitoring and Fault Diagnosis
,”
Mech. Syst. Sig. Process.
,
21
(
6
), pp.
2560
2574
. 10.1016/j.ymssp.2006.12.007
11.
Muralidharan
,
V.
, and
Sugumaran
,
V.
,
2012
, “
A Comparative Study of Naive Bayes Classifier and Bayes Net Classifier for Fault Diagnosis of Monoblock Centrifugal Pump Using Wavelet Analysis
,”
Appl. Soft Comput.
,
12
(
8
), pp.
2023
2029
. 10.1016/j.asoc.2012.03.021
12.
Gouriveau
,
R.
,
Medjaher
,
K.
, and
Zerhouni
,
N.
,
2016
,
From Prognostics and Health Systems Management to Predictive Maintenance 1: Monitoring and Prognostics
,
John Wiley & Sons
,
New York
.
13.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Sig. Process.
,
115
, pp.
213
237
. 10.1016/j.ymssp.2018.05.050
14.
Zheng
,
Y.
,
Liu
,
Q.
,
Chen
,
E.
,
Ge
,
Y.
, and
Zhao
,
J. L.
,
2014
, “
Time Series Classification Using Multi-Channels Deep Convolutional Neural Networks
,”
International Conference on Web-Age Information Management
, Springer,
New York
, pp.
298
310
.
15.
Chen
,
Z.
,
Li
,
C.
, and
Sanchez
,
R.-V.
,
2015
, “
Gearbox Fault Identification and Classification With Convolutional Neural Networks
,”
Shock Vib.
,
2
, pp.
1
10
.
16.
Lee
,
D.
,
Siu
,
V.
,
Cruz
,
R.
, and
Yetman
,
C.
,
2016
, “
Convolutional Neural Net and Bearing Fault Analysis
,”
Proceedings of the International Conference on Data Mining (DMIN), The Steering Committee of The World Congress in Computer Science
, p.
194
.
17.
Wang
,
J.
,
Zhuang
,
J.
,
Duan
,
L.
, and
Cheng
,
W.
,
2016
, “
A Multi-Scale Convolution Neural Network for Featureless Fault Diagnosis
,”
2016 International Symposium on Flexible Automation (ISFA)
, IEEE,
New York
, pp.
65
70
.
18.
Babu
,
G. S.
,
Zhao
,
P.
, and
Li
,
X.-L.
,
2016
, “
Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life
,”
International Conference on Database Systems for Advanced Applications
, Springer,
New York
, pp.
214
228
.
19.
Sun
,
W.
,
Zhao
,
R.
,
Yan
,
R.
,
Shao
,
S.
, and
Chen
,
X.
,
2017
, “
Convolutional Discriminative Feature Learning for Induction Motor Fault Diagnosis
,”
IEEE Trans. Ind. Inf.
,
13
(
3
), pp.
1350
1359
. 10.1109/TII.2017.2672988
20.
Li
,
X.
,
Ding
,
Q.
, and
Sun
,
J.-Q.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
1
11
. 10.1016/j.ress.2017.11.021
21.
Ren
,
L.
,
Sun
,
Y.
,
Wang
,
H.
, and
Zhang
,
L.
,
2018
, “
Prediction of Bearing Remaining Useful Life With Deep Convolution Neural Network
,”
IEEE Access
,
6
, pp.
13041
13049
. 10.1109/ACCESS.2018.2804930
22.
Malhotra
,
P.
,
Vishnu
,
T. V.
,
Ramakrishnan
,
A.
,
Anand
,
G.
,
Vig
,
L.
,
Agarwal
,
P.
, and
Shroff
,
G.
,
2016
, “
Multi-Sensor Prognostics Using an Unsupervised Health Index Based on LSTM Encoder-Decoder
,”
arXiv:1608.06154
.
23.
Zheng
,
S.
,
Ristovski
,
K.
,
Farahat
,
A.
, and
Gupta
,
C.
,
2017
, “
Long Short-Term Memory Network for Remaining Useful Life Estimation
,”
2017 IEEE International Conference on Prognostics and Health Management (ICPHM)
, IEEE,
New York
, pp.
88
95
.
24.
Wu
,
Y.
,
Yuan
,
M.
,
Dong
,
S.
,
Lin
,
L.
, and
Liu
,
Y.
,
2018
, “
Remaining Useful Life Estimation of Engineered Systems Using Vanilla LSTM Neural Networks
,”
Neurocomputing
,
275
, pp.
167
179
. 10.1016/j.neucom.2017.05.063
25.
Yuan
,
M.
,
Wu
,
Y.
, and
Lin
,
L.
,
2016
, “
Fault Diagnosis and Remaining Useful Life Estimation of Aero Engine Using LSTM Neural Network
,”
2016 IEEE International Conference on Aircraft Utility Systems (AUS)
, IEEE,
New York
, pp.
135
140
.
26.
Zhao
,
R.
,
Wang
,
J.
,
Yan
,
R.
, and
Mao
,
K.
,
2016
, “
Machine Health Monitoring With LSTM Networks
,”
2016 10th International Conference on Sensing Technology (ICST)
, IEEE,
New York
, pp.
1
6
.
27.
Schuster
,
M.
, and
Paliwal
,
K. K.
,
1997
, “
Bidirectional Recurrent Neural Networks
,”
IEEE Trans. Signal Process.
,
45
(
11
), pp.
2673
2681
. 10.1109/78.650093
28.
Yu
,
W.
,
Kim
,
I. Y.
, and
Mechefske
,
C.
,
2019
, “
Remaining Useful Life Estimation Using a Bidirectional Recurrent Neural Network Based Autoencoder Scheme
,”
Mech. Syst. Sig. Process.
,
129
, pp.
764
780
. 10.1016/j.ymssp.2019.05.005
29.
Wang
,
J.
,
Wen
,
G.
,
Yang
,
S.
, and
Liu
,
Y.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Bidirectional LSTM Neural Network
,”
2018 Prognostics and System Health Management Conference (PHM-Chongqing)
,
IEEE
,
New York
, pp.
1037
1042
.
30.
Chen
,
J.
,
Jing
,
H.
,
Chang
,
Y.
, and
Liu
,
Q.
,
2019
, “
Gated Recurrent Unit Based Recurrent Neural Network for Remaining Useful Life Prediction of Nonlinear Deterioration Process
,”
Reliab. Eng. Syst. Saf.
,
185
, pp.
372
382
. 10.1016/j.ress.2019.01.006
31.
Li
,
C.
,
Sánchez
,
R.-V.
,
Zurita
,
G.
,
Cerrada
,
M.
, and
Cabrera
,
D.
,
2016
, “
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
,”
Sensors
,
16
(
6
), p.
895
. 10.3390/s16060895
32.
Gao
,
Z.
,
Ma
,
C.
,
Song
,
D.
, and
Liu
,
Y.
,
2017
, “
Deep Quantum Inspired Neural Network With Application to Aircraft Fuel System Fault Diagnosis
,”
Neurocomputing
,
238
, pp.
13
23
. 10.1016/j.neucom.2017.01.032
33.
Lei
,
Y.
,
Li
,
N.
,
Guo
,
L.
,
Li
,
N.
,
Yan
,
T.
, and
Lin
,
J.
,
2018
, “
Machinery Health Prognostics: A Systematic Review From Data Acquisition to RUL Prediction
,”
Mech. Syst. Sig. Process.
,
104
, pp.
799
834
. 10.1016/j.ymssp.2017.11.016
34.
Zhao
,
R.
,
Yan
,
R.
,
Wang
,
J.
, and
Mao
,
K.
,
2017
, “
Learning to Monitor Machine Health With Convolutional Bi-Directional LSTM Networks
,”
Sensors
,
17
(
2
), p.
273
. 10.3390/s17020273
35.
Hinchi
,
A. Z.
, and
Tkiouat
,
M.
,
2018
, “
Rolling Element Bearing Remaining Useful Life Estimation Based on a Convolutional Long-Short-Term Memory Network
,”
Procedia Comput. Sci.
,
127
, pp.
123
132
. 10.1016/j.procs.2018.01.106
36.
Zhao
,
R.
,
Wang
,
D.
,
Yan
,
R.
,
Mao
,
K.
,
Shen
,
F.
, and
Wang
,
J.
,
2017
, “
Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks
,”
IEEE Trans. Ind. Electron.
,
65
(
2
), pp.
1539
1548
. 10.1109/TIE.2017.2733438
37.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M. G.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5695
5705
. 10.1109/TVT.2018.2805189
38.
Li
,
X.
,
Li
,
J.
,
Qu
,
Y.
, and
He
,
D.
,
2019
, “
Gear Pitting Fault Diagnosis Using Integrated CNN and GRU Network With Both Vibration and Acoustic Emission Signals
,”
Appl. Sci.
,
9
(
4
), p.
768
. 10.3390/app9040768
39.
Al-Dulaimi
,
A.
,
Zabihi
,
S.
,
Asif
,
A.
, and
Mohammadi
,
A.
,
2019
, “
A Multimodal and Hybrid Deep Neural Network Model for Remaining Useful Life Estimation
,”
Comput. Ind.
,
108
, pp.
186
196
. 10.1016/j.compind.2019.02.004
40.
Yin
,
S.
,
Liu
,
C.
,
Zhang
,
Z.
,
Lin
,
Y.
,
Wang
,
D.
,
Tejedor
,
J.
,
Zheng
,
T. F.
, and
Li
,
Y.
,
2015
, “
Noisy Training for Deep Neural Networks in Speech Recognition
,”
EURASIP J. Audio, Speech, Music Process.
,
2015
(
1
), p.
2
. 10.1186/s13636-014-0047-0
41.
Sukhbaatar
,
S.
,
Bruna
,
J.
,
Paluri
,
M.
,
Bourdev
,
L.
, and
Fergus
,
R.
,
2014
, “
Training Convolutional Networks With Noisy Labels
,”
arXiv:1406.2080
.
42.
Aguilar-Gonzalez
,
P. M.
,
Kober
,
V.
, and
Diaz-Ramirez
,
V. H.
,
2014
, “
Adaptive Composite Filters for Pattern Recognition in Nonoverlapping Scenes Using Noisy Training Images
,”
Pattern Recognit. Lett.
,
41
, pp.
83
92
. 10.1016/j.patrec.2013.09.016
43.
Reed
,
S.
,
Honglak
,
L.
,
Dragomir
,
A.
,
Christian
,
S.
,
Dumitru
,
E.
, and
Andrew
,
R.
,
2015
, “
Training Deep Neural Networks on Noisy Labels With Bootstrapping
,”
arXiv: Computer Vision and Pattern Recognition
.
44.
Chen
,
R.
,
Chen
,
S.
,
He
,
M.
,
He
,
D.
, and
Tang
,
B.
,
2017
, “
Rolling Bearing Fault Severity Identification Using Deep Sparse Auto-Encoder Network With Noise Added Sample Expansion
,”
J. Risk Reliab.
,
231
(
6
), pp.
666
679
.
45.
Saxena
,
A.
, and
Goebel
,
K.
,
2008
, “
C-MAPSS Data Set
,”
NASA Ames Prognostics Data Repository
.
46.
Saxena
,
A.
, and
Goebel
,
K.
,
2008
, “
PHM08 challenge data set
,”
NASA Ames Prognostics Data Repository, NASA Ames Research Center
.
47.
Abdel-Hamid
,
O.
,
Mohamed
,
A.-R.
,
Jiang
,
H.
, and
Penn
,
G.
,
2012
, “
Applying Convolutional Neural Networks Concepts to Hybrid NN-HMM Model for Speech Recognition
,”
2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, IEEE,
New York
, pp.
4277
4280
.
48.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2012
, “
Imagenet Classification With Deep Convolutional Neural Networks
,”
Advances in Neural Information Processing Systems
, pp.
1097
1105
.
49.
Yamashita
,
R.
,
Nishio
,
M.
,
Do
,
R. K. G.
, and
Togashi
,
K.
,
2018
, “
Convolutional Neural Networks: An Overview and Application in Radiology
,”
Insights Imaging
,
9
(
4
), pp.
611
629
. 10.1007/s13244-018-0639-9
50.
Ince
,
T.
,
Kiranyaz
,
S.
,
Eren
,
L.
,
Askar
,
M.
, and
Gabbouj
,
M.
,
2016
, “
Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks
,”
IEEE Trans. Ind. Electron.
,
63
(
11
), pp.
7067
7075
. 10.1109/TIE.2016.2582729
51.
Karpathy
,
S. C. S. A.
,
2015
, “
Convolutional Neural Networks for Visual Recognition (CS23)
.”
52.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
. 10.1162/neco.1997.9.8.1735
53.
Di
,
W.
,
Bhardwaj
,
A.
, and
Wei
,
J.
,
2018
,
Deep Learning Essentials: Your Hands-On Guide to the Fundamentals of Deep Learning and Neural Network Modeling
,
Packt Publishing
,
Birmingham, UK
54.
You
,
Q.
,
Jin
,
H.
,
Wang
,
Z.
,
Fang
,
C.
, and
Luo
,
J.
,
2016
, “
Image Captioning With Semantic Attention
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp.
4651
4659
.
55.
Wang
,
S.
, and
Jiang
,
J.
,
2015
, “
Learning Natural Language Inference With LSTM
,”
arXiv:1512.08849
.
56.
Sun
,
L.
,
Su
,
T.
,
Liu
,
C.
, and
Wang
,
R.
,
2016
, “
Deep LSTM Networks for Online Chinese Handwriting Recognition
,”
2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)
, IEEE,
New York
, pp.
271
276
.
57.
Graves
,
A.
, and
Schmidhuber
,
J.
,
2005
, “
Framewise Phoneme Classification With Bidirectional LSTM and Other Neural Network Architectures
,”
Neural Networks
,
18
(
5–6
), pp.
602
610
. 10.1016/j.neunet.2005.06.042
58.
Graves
,
A.
,
Jaitly
,
N.
, and
Mohamed
,
A.-R.
,
2013
, “
Hybrid Speech Recognition With Deep Bidirectional LSTM
,”
2013 IEEE Workshop on Automatic Speech Recognition and Understanding
, IEEE,
New York
, pp.
273
278
.
59.
Valchanov
,
I.
, “
Machine learning: An overview
.”
60.
Yang
,
W.
,
Jin
,
L.
,
Tao
,
D.
,
Xie
,
Z.
, and
Feng
,
Z.
,
2016
, “
Dropsample: A New Training Method to Enhance Deep Convolutional Neural Networks for Large-Scale Unconstrained Handwritten Chinese Character Recognition
,”
Pattern Recognit.
,
58
, pp.
190
203
. 10.1016/j.patcog.2016.04.007
61.
Brownlee
,
J.
, “
A Gentle Introduction to Mini-Batch Gradient Descent and How to Configure Batch Size
,”
ML Mastery
, https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/, Accessed July 23, 2017.
62.
Famouri
,
M.
,
Taheri
,
M.
, and
Azimifar
,
Z.
,
2015
, “
Fast Linear SVM Validation Based on Early Stopping in Iterative Learning
,”
Int. J. Pattern Recognit Artif Intell.
,
29
(
8
), p.
1551013
. 10.1142/S0218001415510131
63.
Park
,
D.
,
Kim
,
S.
,
An
,
Y.
, and
Jung
,
J.-Y.
,
2018
, “
LiReD: A Light-Weight Real-Time Fault Detection System for Edge Computing Using LSTM Recurrent Neural Networks
,”
Sensors
,
18
(
7
), p.
2110
. 10.3390/s18072110
64.
Zeiler
,
M. D.
,
2012
, “
Adadelta: An Adaptive Learning Rate Method
,”
arXiv:1212.5701
.
65.
Lim
,
P.
,
Goh
,
C. K.
,
Tan
,
K. C.
, and
Dutta
,
P.
,
2015
, “
Multimodal Degradation Prognostics Based on Switching Kalman Filter Ensemble
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
1
), pp.
136
148
. 10.1109/TNNLS.2015.2504389
66.
Zhang
,
C.
,
Lim
,
P.
,
Qin
,
A. K.
, and
Tan
,
K. C.
,
2016
, “
Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
10
), pp.
2306
2318
. 10.1109/TNNLS.2016.2582798
67.
Peel
,
L.
,
2008
, “
Data Driven Prognostics Using a Kalman Filter Ensemble of Neural Network Models
,”
2008 International Conference on Prognostics and Health Management
, IEEE,
New York
, pp.
1
6
.
68.
Lim
,
P.
,
Goh
,
C. K.
, and
Tan
,
K. C.
,
2016
, “
A Time Window Neural Network Based Framework for Remaining Useful Life Estimation
,”
2016 International Joint Conference on Neural Networks (IJCNN)
, IEEE,
New York
, pp.
1746
1753
.
69.
Hsu
,
C.-S.
, and
Jiang
,
J.-R.
,
2018
, “
Remaining Useful Life Estimation Using Long Short-Term Memory Deep Learning
,”
2018 IEEE International Conference on Applied System Invention (ICASI)
, IEEE,
New York
, pp.
58
61
.
70.
Heimes
,
F. O.
,
2008
, “
Recurrent Neural Networks for Remaining Useful Life Estimation
,”
2008 International Conference on Prognostics and Health Management
, IEEE,
New York
, pp.
1
6
.
71.
Liao
,
Y.
,
Zhang
,
L.
, and
Liu
,
C.
,
2018
, “
Uncertainty Prediction of Remaining Useful Life Using Long Short-Term Memory Network Based on Bootstrap Method
,”
2018 IEEE International Conference on Prognostics and Health Management (ICPHM)
, IEEE,
New York
, pp.
1
8
.
72.
Jayasinghe
,
L.
,
Samarasinghe
,
T.
,
Yuen
,
C.
,
Low
,
J. C. N.
, and
Ge
,
S. S.
,
2018
, “
Temporal Convolutional Memory Networks for Remaining Useful Life Estimation of Industrial Machinery
,”
arXiv:1810.05644
.
73.
Wen
,
L.
,
Dong
,
Y.
, and
Gao
,
L.
,
2019
, “
A New Ensemble Residual Convolutional Neural Network for Remaining Useful Life Estimation
,”
Math. Biosci. Eng
,
16
, pp.
862
880
. 10.3934/mbe.2019040
74.
Ellefsen
,
A. L.
,
Bjorlykhaug
,
E.
,
Esoy
,
V.
,
Ushakov
,
S.
, and
Zhang
,
H.
,
2019
, “
Remaining Useful Life Predictions for Turbofan Engine Degradation Using Semi-Supervised Deep Architecture
,”
Reliab. Eng. Syst. Saf.
,
183
, pp.
240
251
. 10.1016/j.ress.2018.11.027
75.
Ramasso
,
E.
,
2014
, “
Investigating Computational Geometry for Failure Prognostics
,”
Int. J. Progn. Health Manage.
,
5
(
1
), p.
005
.
You do not currently have access to this content.