Abstract

This paper demonstrates the development of a thermal error model that is applied on the feed axis of machine tools and based on the neural network. This model can accurately predict the value of the axial thermal error that appears on machine feed axis. In principle, there is the generalized regression neural network (GRNN), which has the good nonlinear mapping ability and serves to construct the error model. About variables, the data of temperature and axial thermal error of machine feed axis are the inputs and outputs, respectively. The particle swarm optimization (PSO) is a component of this model, which serves to optimize the smoothing factor in GRNN, and the particle swarm optimization-based generalized regression neural network (PSO-GRNN) model is built. From experiment, the datum is acquired from a machining centre in four different feed rates. Thereafter, the back propagation (BP) neural network model, the traditional GRNN model, and the PSO-GRNN model were established, and the data collected from the experimentation are input in three models for prediction. Compared with the other two models used in this paper, the PSO-GRNN model can maintain higher prediction accuracy at different feed speed, and the prediction accuracy of it changes less in different feed rates. The proposed model solved the problem of generalization ability of the neural network at different feed rate, which shows good performance and lays a good foundation for further research like thermal error compensation.

References

1.
Mayr
,
J.
,
Jedrzejewski
,
J.
, and
Uhlmann
,
E.
,
2012
, “
Thermal Issues in Machine Tools
,”
CIRP Ann. Manuf. Technol.
,
61
(
2
), pp.
771
791
. 10.1016/j.cirp.2012.05.008
2.
Jianguo
,
Y.
, “
Present Situation and Prospect of Error Compensation Technology for NC Machine Tool
,”
Aeronaut. Manuf. Technol.
,
2012
(
5
), pp.
40
45
.
3.
Jianguo
,
Y.
,
Jingxia
,
Y.
, and
Jun
,
N.
,
1999
, “
Thermal Error Mode Analysis and Robust Modeling for Error Compensation on a CNC Turning Center
,”
Int. J. Mach. Tools Manuf.
,
39
(
9
), pp.
1367
1381
. 10.1016/S0890-6955(99)00008-5
4.
Chunshi
,
L.
,
Xiaobo
,
M.
, and
Hui
,
L.
,
2010
, “
Improvement Technology and Research Contents of Machining Accuracy for CNC Machine Tools
,”
Modular Machine Tool Automat. Manuf. Tech.
,
11
, pp.
1
4
.
5.
Yongyao
,
L.
,
2016
,
Temperature Measuring Point Optimization and Thermal Error Modeling of Machine Center
,
Dalian University of Technology
,
Dalian, China
.
6.
Abdulshahed
,
A. M.
,
Longstaff
,
A. P.
, and
Fletcher
,
S.
,
2015
, “
The Application of ANFIS Prediction Models for Thermal Error Compensation on CNC Machine Tools
,”
Appl. Soft Comput.
,
27
(
7
), pp.
158
168
. 10.1016/j.asoc.2014.11.012
7.
Jinhua
,
S.
, and
Jianguo
,
Y.
,
2009
, “
Application of Partial Least Squares Neural Network in Thermal Error Modeling for CNC Machine Tool
,”
Key Eng. Mater.
,
392
, pp.
30
34
. 10.4028/www.scientific.net/KEM.392-394.30
8.
Ting
,
Z.
,
Wenhua
,
Y.
, and
Yicai
,
S.
,
2016
, “
Application of Sliced Inverse Regression With Fuzzy Clustering for Thermal Error Modeling of CNC Machine Tool
,”
Int. J. Adv. Manuf. Technol.
,
85
(
9–12
), pp.
2761
2771
. 10.1007/s00170-015-8135-6
9.
Enming
,
M.
,
Tianju
,
C.
,
Pengcheng
,
N.
, and
Yayun
,
G.
,
2013
, “
Application of High Order and Multi-Level Autoregressive Distributed Lag Model to Thermal Error Compensation of Machine Tools
,”
China Mech. Eng.
,
14
(
15
), pp.
2088
2093
. 10.3969/j.issn.1004-132X.2013.15.019
10.
Gangwei
,
C.
,
Dong
,
G.
, and
Yingxue
,
Y.
,
2012
, “
Thermal Error Separating and Modeling for Heavy-Duty CNC Machine Tools
,”
J. Harbin Inst. Technol.
,
44
(
9
), pp.
51
56
.
11.
Yi
,
Y.
,
Xiao-dong
,
Y.
, and
Jian-guo
,
Y.
,
2013
, “
Thermo-Drifting Error Modeling of Spindle Based on Combination of Principal Component Analysis and BP Neural Network
,”
J. Shanghai Jiaotong Univ.
,
47
(
5
), pp.
750
753
. 759.
12.
Yi
,
Z.
, and
Jianguo
,
Y.
,
2012
, “
Grey Neural Network Modeling for Machine Tool Thermal Error
,”
J. Shanghai Jiao Tong Univ.
,
45
(
11
), pp.
1581
1586
.
13.
Feng
,
T.
,
Ming
,
Y.
,
Ji
,
P.
,
Yabin
,
W.
, and
Guofu
,
Y.
,
2018
, “
CNC Machine Tool Spindle Thermal Error Modeling Based on Ensemble BP Neural Network
,”
Comput. Integr. Manuf. Syst.
,
24
(
6
), pp.
1383
1390
. 10.13196/j.cims.2018.06.007
14.
Chengxin
,
Z.
,
Feng
,
G.
, and
Yan
,
L.
,
2015
, “
On-line Compensation Model Based on Real-Time Feedback Thermal Errors of Machine Tools
,”
China Mech. Eng.
,
26
(
3
), pp.
361
365
.
15.
Hui
,
J.
,
2013
, “
Modeling of CNC Machine Tool Spindle Thermal Distortion With LS-SVM Based on Bayesian Inference
,”
J. Mech. Eng.
,
49
(
15
), pp.
115
121
. 10.3901/JME.2013.15.115
16.
Yi
,
Z.
, and
Jian-guo
,
Y.
,
2011
, “
Modeling for Machine Tool Thermal Error Based on Grey Model Preprocessing Neural Network
,”
J. Mech. Eng.
,
47
(
7
), pp.
134
139
. 10.3901/JME.2011.07.134
17.
Pinghua
,
J.
, and
Luo
,
H.
,
2017
, “
Thermal Error Compensation Technology of CNC Machine Tools Based on Grey Model (1,4)
,”
J. Chongqing Univ.
,
40
(
10
), pp.
23
29
.
18.
Xiao-dong
,
Y.
,
Yi-qiao
,
H.
,
Xiao-bo
,
M.
,
Bo
,
X.
, and
Jianguo
,
Y.
,
2016
, “
Thermal Error Modeling and Real-Time Compensation of CNC Machine Tools Based on Time Series Method
,”
J. Shanghai Jiaotong Univ.
,
50
(
5
), pp.
673
679
. 10.16183/j.cnki.jsjtu.2016.05.005
19.
Yufeng
,
S.
,
Wenxin
,
Y.
,
Deping
,
L.
,
Wufa
,
L.
, and
Zhiyong
,
D.
,
2013
, “
A Thermal Errors Compensation Model for High-Speed Motorized Spindle Based on BP Neural Network
,”
Modular Machine Tool Automat. Manuf. Tech.
,
1
, pp.
36
38
. 10.11835/j.issn.1000-582X.2017.10.003
20.
Jingyang
,
Z.
, and
Guangyou
,
P.
,
2013
, “
Comparison and Application of Multiple Regression and BP Neural Network Prediction Model
,”
J. Kunming Univ. Sci. Technol.
,
38
(
6
), pp.
61
67
.
21.
Zhang
,
Y.
,
Yang J
,
G.
, and
Jiang
,
H.
,
2012
, “
Machine Tool Thermal Error Modeling and Prediction by Grey Neural Network
,”
Int. J. Adv. Manuf. Technol.
,
59
(
9
), pp.
1065
1072
. 10.1007/s00170-011-3564-3
22.
Specht
,
D. F.
,
1991
, “
A General Regression Neural Network
,”
IEEE Trans. Neural Networks
,
2
(
6
), pp.
568
576
. 10.1109/72.97934
23.
Ku
,
S.-J.
, and
Wang
,
C.-L.
,
2012
, “
A New Side Information Free PTS Scheme for PAPR Reduction in OFDM System
,”
IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications
,
Barcelona, Spain
,
Oct. 8–10
, pp.
108
112
.
24.
Lu
,
G.
, and
Wu
,
P.
,
2007
, “
Peak-to-Average Power Ratio Reduction in OFDM Using Cyclically Shifted Phase Sequences
,”
IET Commun.
,
1
(
6
), pp.
1146
1151
. 10.1049/iet-com:20060038
25.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE Int. Conf. Neural Networks
,
4
, pp.
1942
1948
. 10.1109/ICNN.1995.488968
26.
Da
,
Y.
, and
Xiurun
,
G.
,
2005
, “
An Improved PSO-Based ANN With Simulated Annealing Technique
,”
Neurocomputing
,
63
, pp.
527
533
. 10.1016/j.neucom.2004.07.002
27.
Jianbo
,
Y.
,
Shijin
,
W.
, and
Lifeng
,
X.
,
2008
, “
Evolving Artificial Neural Networks Using an Improved PSO and DPSO
,”
Neurocomputing
,
71
(
4–6
), pp.
1054
1060
. 10.1016/j.neucom.2007.10.013
28.
Pasti
,
L.
,
Walczak
,
B.
, and
Massart
,
D. L.
,
1999
, “
Optimization of Signal De-Noising in Discrete Wavelet Transform
,”
Chemom. Intell. Lab. Syst.
,
48
(
1
), pp.
21
34
. 10.1016/S0169-7439(99)00002-7
29.
Nason
,
G. P.
,
1996
, “
Wavelet Shrinkage Using Cross-Validation
,”
J. Roy. Stat. Soc. B Methodol.
,
58
(
2
), pp.
264
279
. 10.1111/j.2517-6161.1996.tb02094.x
30.
Min
,
X.
, and
Jiang
,
S.
,
2011
, “
A Thermal Error Model of a Ball Screw Feed Drive System for a Machine Tool
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
1
), pp.
186
193
. 10.1177/09544062JMES2148
31.
Kuo
,
L.
,
Mingjia
,
S.
,
Yuliang
,
W.
, and
Tiejun
,
Z.
,
2016
, “
Thermal Error Compensation Without Temperature Sensors for CNC Machine Tools’ Feed Drive System
,”
J. Mech. Eng.
,
52
(
15
), pp.
162
169
. 10.3901/JME.2016.15.162
32.
Cheng
,
C.
,
Zurong
,
Q.
,
Xing-fei
,
L.
,
Cheng-jun
,
D.
, and
Chen-yang
,
Z.
,
2011
, “
Temperature Field Model of Ball Screws Used in Servo Systems
,”
Optic. Precis. Eng.
,
19
(
5
), pp.
1151
1158
. 10.3788/OPE.20111905.1151
33.
Baojun
,
L.
,
2013
,
Temperature Field and Thermal Deformation of Feed System on Gantry Machining Center
,
Nanjing University of Aeronautics and Astronautics
,
Nanjing, China
.
You do not currently have access to this content.