An energy decaying integration scheme for an intrinsic, geometrically exact, multibody dynamics model with composite, dimensionally reducible, active beamlike structures is proposed. The scheme is based on the first order generalized-α method that was proposed and successfully applied to various nonlinear dynamics models. The similarities and the differences between the mathematical structure of the nonlinear intrinsic model and a parallel nonlinear mixed model of chains are highlighted to demonstrate the effect of the form of the governing equation on the stability of the integration scheme. Simple C° shape functions are used in the spatial discretization of the state variables owing to the weak form of the model. Numerical solution of the transient behavior of multibody systems, representative of various rotor blade system configurations, is presented to highlight the advantages and the drawbacks of the integration scheme. Simulation predictions are compared against experimental results whenever the latter is available to verify the implementation. The suitability and the robustness of the proposed integration scheme are then established based on satisfying two conservational laws derived from the intrinsic model, which demonstrate the retained energy decaying characteristic of the scheme and its unconditional stability when applied to the intrinsic nonlinear problem, and the dependance of its success on the form of the governing equations.

1.
Yu
,
W.
, 2007, “
Efficient High-Fidelity Simulation of Multibody Systems With Composite Dimensionally Reducible Components
,”
J. Am. Helicopter Soc.
0002-8711,
52
(
1
), pp.
49
57
.
2.
Cesnik
,
C. E. S.
,
Sutyrin
,
V. G.
, and
Hodges
,
D. H.
, 1993, “
A Refined Composite Beam Theory Based on the Variational-Asymptotic Method
,”
Proceedings of the 34th Structures, Structural Dynamics, and Materials Conference
, La Jolla, CA, Apr., AIAA Paper No. 93-1616, pp.
2710
2720
.
3.
Popescu
,
B.
, and
Hodges
,
D. H.
, 2000, “
On Asymptotically Correct Timoshenko-Like Anisotropic Beam Theory
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
535
558
.
4.
Cesnik
,
C. E. S.
, and
Palacios
,
R.
, 2003, “
Modeling Piezocomposite Actuators Embedded in Slender Structures
,”
Proceedings of the 44th AIAA/ASME/ASCHE/AHS Structures, Structural Dynamics and Materials Conference
,
Norfolk
,
Virginia
, Apr. 7–10.
5.
Khouli
,
F.
,
Langlois
,
R. G.
, and
Afagh
,
F. F.
, 2007, “
Analysis of Active Closed-Cross Section Slender Beams Based on Asymptotically Correct Thin-Wall Beam Theory
,”
Smart Mater. Struct.
0964-1726,
16
(
1
), pp.
221
229
.
6.
Bauchau
,
O. A.
, DYMORE User’s and Theory Manual,
Georgia Institute of Technology
.
7.
Ozbay
,
S.
,
Bauchau
,
O.
,
Dancila
,
D. S.
, and
Armanios
,
E. A.
, 2005, “
Extension-Twist Coupling Optimization in Composite Rotor Blades
,”
Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Austin, TX
, Apr. 18–21.
8.
Bauchau
,
O. A.
, and
Hodges
,
D. H.
, 1999, “
Analysis of Nonlinear Multibody Systems With Elastic Couplings
,”
Multibody Syst. Dyn.
1384-5640,
3
(
2
), pp.
163
188
.
9.
Bir
,
G. S.
, 2005, “
Structural Dynamics Verification of Rotorcraft Comprehensive Analysis System (RCAS)
,” National Renewable Energy Laboratory, Technical Report No. 80401-3393.
10.
Hodges
,
D. H.
,
Hossein
,
S.
, and
Ormiston
,
R. A.
, 2007, “
Development of Nonlinear Beam Elements for Rotorcraft Comprehensive Analyses
,”
J. Am. Helicopter Soc.
0002-8711, Helicopter Society,
52
(
1
), pp.
36
48
.
11.
Hodges
,
D. H.
, 1990, “
A Mixed Variational Formulation Based on Exact Intrinsic Equations for Dynamics of Moving Beams
,”
Int. J. Solids Struct.
0020-7683,
26
(
11
), pp.
1253
1273
.
12.
Leigh
,
E. J.
, and
Kunz
,
D. L.
, 2007, “
Simulation of a Moving Elastic Beam Using Hamilton’S Weak Principle
,”
AIAA J.
0001-1452,
45
(
2
), pp.
471
476
.
13.
Hodges
,
D. H.
, 2003, “
Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams
,”
AIAA J.
0001-1452,
41
(
6
), pp.
1131
1137
.
14.
Patil
,
M. J.
, and
Hodges
,
D. H.
, 2006, “
Flight Dynamics of Highly Flexible Flying Wings
,”
J. Aircr.
0021-8669,
43
(
6
), pp.
1790
1798
.
15.
Bottasso
,
C. L.
, and
Trainelli
,
L.
, 2004, “
An Attempt at the Classification of Energy Decaying Schemes for Structural and Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
12
(
2
),
173
185
.
16.
Gobat
,
J. I.
, and
Grosenbaugh
,
M. A.
, 2001, “
Application of the Generalized-α Method to the Time Integration of the Cable Dynamics Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
37–38
), pp.
4817
4829
.
17.
Gobat
,
J. I.
,
Grosenbaugh
,
M. A.
, and
Triantofyllou
,
M. S.
, 2002, “
Generalized-α Time Integration Solutions for Hanging Chain Dynamics
,” Woods Hole Oceanographic Institution Technical Report.
18.
Chung
,
J.
and
Hulbert
,
G. M.
, 1993, “
Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
0021-8936,
60
(
2
), pp.
371
375
.
19.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
, 2000, “
A Genralized-α Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
3–4
), pp.
305
319
.
20.
Hodges
,
D. H.
,
Atilgan
,
A. R.
,
Cesnik
,
C. E. S.
, and
Fulton
,
M. V.
, 1992, “
On a Simplified Strain Energy Function for Geometrically Nonlinear Behaviour of Anisotropic Beams
,”
Composites Eng.
0961-9526,
2
(
5–7
), pp.
513
526
.
21.
Shabana
,
A. A.
,
Computational Dynamics
,
Wiley-Interscience
,
New York
.
22.
Paz
,
M.
, and
Leigh
,
W.
, 2004,
Structural Dynamics: Theory And Computation
,
Kluwer Academic
,
Dordrecht
.
23.
Newman
,
S.
, 1999, “The Phenomenon of Helicopter Blade Sailing,” Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering, 213(6), pp. 347–363.
24.
Keller
,
J. A.
, and
Smith
,
E. C.
, 1999, “
Experimental and Theoretical Correlation of Helicopter Rotor Blade-Droop Stop Impacts
,”
J. Aircr.
0021-8669,
36
(
2
), pp.
443
450
.
25.
Bottasso
,
C. L.
, and
Bauchau
,
O. A.
, 2001, “
Multibody Modeling of Engage and Disengage Operations of Helicopter Rotors
,”
J. Am. Helicopter Soc.
0002-8711,
46
(
4
) pp.
290
300
.
26.
Bottasso
,
C. L.
, Notes on Unilateral Contact Modeling in Multibody Dynamics, Politecnico di Milano.
27.
Bauchau
,
O. A.
, and
Theron
,
N. J.
, 1996, “
Energy Decaying Scheme for Non-Linear Beam Models
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
134
(
1–2
), pp.
37
56
.
28.
Epps
,
J. J.
, and
Chandra
,
R.
, 1996, “
Natural Frequencies of Rotating Composite Beams With Tip Sweep
,”
J. Am. Helicopter Soc.
0002-8711,
41
(
1
), pp.
29
36
.
29.
Hodges
,
D. H.
,
Shang
,
X.
, and
Cesnik
,
C. E. S.
, 1996, “
Finite Element Solution of Nonlinear Intrinsic Equations for Curved Composite Beams
,”
J. Am. Helicopter Soc.
0002-8711,
41
(
4
), pp.
313
321
.
30.
Hughes
,
T. J. R.
, 1987,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.