During the last few years, remarkable developments have been made in the theory of the fractional variational principles and their applications to control problems and fractional quantization issue. The variational principles have been used in physics to construct the phase space of a fractional dynamical system. Based on the Caputo derivatives, the fractional dynamics of discrete constrained systems is presented and the notion of the reduced phase space is discussed. Two examples of discrete constrained system are analyzed in detail.

1.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic
,
San Diego, CA
.
2.
Zaslavsky
,
G. M.
, 2005,
Hamiltonian Chaos and Fractional Dynamics
,
Oxford University Press
,
Oxford
.
3.
Kilbas
,
A. A.
,
Srivastava
,
H. H.
, and
Trujillo
,
J. J.
, 2006,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
New York
.
4.
Magin
,
R. L.
, 2006,
Fractional Calculus in Bioengineering
,
Begell House
,
Redding, CT
.
5.
Oldham
,
K. B.
, and
Spanier
,
J.
, 1974,
The Fractional Calculus
,
Academic
,
New York
.
6.
Miller
,
K. S.
, and
Ross
,
B.
, 1993,
An Introduction to the Fractional Integrals and Derivatives: Theory and Applications
,
Wiley
,
New York
.
7.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
, 1993,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach
,
Linghorne, PA
.
8.
Hilfer
,
R.
, 2000,
Applications of Fractional Calculus in Physics
,
World Scientific
,
Singapore
.
9.
F. Mainardi
,
A.
, 1997, “
Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics
,”
Fractals and Fractional Calculus in Continuum Mechanics
,
A.
Carpinteri
and
F.
Mainardi
, eds.,
Springer-Verlag
,
New York
.
10.
Ortigueira
,
M. D.
, 2003, “
On the Initial Conditions in Continuous-Time Fractional Linear Systems
,”
Signal Process.
0165-1684,
83
(
11
), pp.
2301
2309
.
11.
Tenreiro Machado
,
J. A.
, 1997, “
Analysis and Design of Fractional Order Digital Control Systems
,”
Syst. Anal. Model. Simul.
0232-9298,
27
, pp.
107
122
.
12.
Trujillo
,
J. J.
, 1999, “
On a Riemann–Liouville Generalized Taylor’S Formula
,”
J. Math. Anal. Appl.
0022-247X,
231
, pp.
255
265
.
13.
Tofighi
,
A.
, 2006, “
The Intrisic Damping of the Fractional Oscillator
,”
Physica A
0378-4371,
329
, pp.
29
34
.
14.
Chen
,
W.
, and
Holm
,
S.
, 2004, “
Fractional Laplacian Time-Space Models for Linear and Nonlinear Lossy Media Exhibiting Arbitrary Frequency Power-Law Dependency
,”
J. Acoust. Soc. Am.
0001-4966,
115
(
4
), pp.
1424
1430
.
15.
Goldfain
,
E.
, 2004, “
Fractional Dynamics, Cantorian Space-Time and the Gauge Hierarchy Problem
,”
Chaos, Solitons Fractals
0960-0779,
22
(
3
), pp.
513
520
.
16.
da Graa Marcos
,
M.
,
Duarte
,
F. B. M.
, and
Tenreiro Machado
,
J. A.
, 2007, “
Fractional Dynamics in the Trajectory Control of Redundant Manipulators
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704, in press; doi: 10.1016/j.cnsns.2007.03.027.
17.
Agrawal
,
O. P.
, 2006, “
Formulation and a Numerical Scheme for Fractional Optimal Control Problems
,”
Proceedings of the IFAC∕FDA06
,
Porto, Portugal
, Jul. 19–21.
18.
Agrawal
,
O. P.
, and
Baleanu
,
D.
, 2007, “
A Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems
,”
J. Vib. Control
1077-5463,
13
(
9-10
), pp.
1239
1247
.
19.
Tarasov
,
V. E.
, and
Zaslavsky
,
G. M.
, 2006, “
Fractional Dynamics of Systems With Long-Range Interaction
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
11
(
8
), pp.
885
898
.
20.
Korabel
,
N.
,
Zaslavsky
,
G. M.
, and
Tarasov
,
V. E.
, 2007, “
Coupled Oscillators With Power-Law Interaction and Their Fractional Dynamics Analogues
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
(
8
), pp.
1405
1417
.
21.
Momani
,
S.
, 2006, “
A Numerical Scheme for the Solution of Multi-Order Fractional Differential Equations
,”
Appl. Math. Comput.
0096-3003,
182
, pp.
761
770
.
22.
El-Wakil
,
S. A.
,
Elhanbaly
,
A.
, and
Abdou
,
M. A.
, 2006, “
A Domian Decomposition Method for Solving Fractional Nonlinear Differential Equations
,”
Appl. Math. Comput.
0096-3003,
182
, pp.
313
324
.
23.
Riewe
,
F.
, 1996, “
Nonconservative Lagrangian and Hamiltonian Mechanics
,”
Phys. Rev. E
1063-651X,
55
, pp.
1890
1899
.
24.
Riewe
,
F.
, 1997, “
Mechanics With Fractional Derivatives
,”
Phys. Rev. E
1063-651X,
55
, pp.
3581
3592
.
25.
Klimek
,
M.
, 2002, “
Lagrangian and Hamiltonian Fractional Sequential Mechanics
,”
Czech. J. Phys.
0011-4626,
52
, pp.
1247
1254
.
26.
Tarasov
,
V. E.
, and
Zaslavsky
,
G. M.
, 2007, “
Conservation Laws and Hamilton’S Equations for Systems With Long-Range Interaction and Memory
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704, in press; doi: 10.1016/j.cnsns.2007.05.017.
27.
Tenreiro Machado
,
J. A.
, 2001, “
Discrete-Time Fractional-Order Controllers
,”
Fractional Calculus Appl. Anal.
1311-0454,
4
(
1
), pp.
47
68
.
28.
Agrawal
,
O. P.
, 2002, “
Formulation of Euler-Lagrange Equations for Fractional Variational Problems
,”
J. Math. Anal. Appl.
0022-247X,
272
, pp.
368
379
.
29.
Naber
,
M.
, 2004, “
Time Fractional Schrödinger Equation
,”
J. Math. Phys.
0022-2488,
45
, pp.
3339
3352
.
30.
Stanislavsky
,
A. A.
, 2005, “
Probability Interpretation of the Integral of Fractional Order
,”
Theor. Math. Phys.
0040-5779,
138
, pp.
418
431
.
31.
Nigmatullin
,
R. R.
, 1992, “
The Fractional Integral and Its Physical Interpretation
,”
Theor. Math. Phys.
0040-5779,
90
, pp.
242
251
.
32.
Tarasov
,
V. E.
, 2006, “
Electromagnetic Fields on Fractals
,”
Mod. Phys. Lett. A
0217-7323,
12
, pp.
1587
1600
.
33.
El-Nabulusi
,
R. A.
, 2007, “
Differential Geometry and Modern Cosmology With Fractionaly Differentiated Lagrangian Function and Fractional Decaying Force Term
,”
Rom. J. Phys.
1221-146X,
52
, pp.
441
450
.
34.
Agrawal
,
O. P.
, 2006, “
Fractional Variational Calculus and the Transversality Conditions
,”
J. Phys. A
0305-4470,
39
, pp.
10375
10384
.
35.
Muslih
,
S.
, and
Baleanu
,
D.
, 2005, “
Hamiltonian Formulation of Systems With Linear Velocities Within Riemann–Liouville Fractional Derivatives
,”
J. Math. Anal. Appl.
0022-247X,
304
(
3
), pp.
599
603
.
36.
Baleanu
,
D.
, 2006, “
Fractional Hamiltoian Analysis of Irregular Systems
,”
Signal Process.
0165-1684,
86
(
10
), pp.
2632
2636
.
37.
Baleanu
,
D.
, and
Muslih
,
S. I.
, 2005, “
Formulation of Hamiltonian Equations for Fractional Variational Problems
,”
Czech. J. Phys.
0011-4626,
55
(
6
), pp.
633
642
.
38.
Baleanu
,
D.
, and
Muslih
,
S. I.
, 2005, “
Lagrangian Formulation of Classical Fields Within Riemann-Liouville Fractional Derivatives
,”
Phys. Scr.
0031-8949,
72
(
2–3
), pp.
119
121
.
39.
Baleanu
,
D.
, and
Avkar
,
T.
, 2004, “
Lagrangians With Linear Velocities Within Riemann–Liouville Fractional Derivatives
,”
Nuovo Cimento B
0369-3554,
119
, pp.
73
79
.
40.
Baleanu
,
D.
,
Muslih
,
S. I.
, and
Tas
,
K.
, 2006, “
Fractional Hamiltonian Analysis of Higher Order Derivatives Systems
,”
J. Math. Phys.
0022-2488,
47
(
10
), pp.
1
10
.
41.
Rabei
,
E. M.
,
Nawafleh
,
K. I.
,
Hijjawi
,
R. S.
,
Muslih
,
S. I.
, and
Baleanu
,
D.
, 2007, “
The Hamilton Formalism With Fractional Derivatives
,”
J. Math. Anal. Appl.
0022-247X,
327
(
2
), pp.
891
897
.
42.
Baleanu
,
D.
, and
Agrawal
,
O. P.
, 2006, “
Fractional Hamilton Formalism Within Caputo’s Derivative
,”
Czech. J. Phys.
0011-4626,
56
(
10–11
), pp.
1087
1092
.
43.
Hermann
,
R.
, 2007, “
The Fractional Symmetric Rigid Rotor
,”
J. Phys. G
0954-3899,
34
, pp.
607
625
.
44.
Henneaux
,
M.
, and
Teitelboim
,
C.
, 1993,
Quantization of Gauge Systems
,
Princeton University
,
Princeton, NJ
.
45.
Jumarie
,
G.
, 2007, “
Lagrangian Mechanics of Fractional Order, Hamilton-Jacobi Fractional PDE and Taylor’s Series of Nondifferntiable Functions
,”
Chaos, Solitons Fractals
0960-0779,
32
, pp.
969
987
.
You do not currently have access to this content.