Abstract

Electromechanical actuators play a crucial role in diverse engineering and physics fields, particularly in the aerospace and automotive industries. Their dynamic characteristics significantly affect the aeroelastic behavior of fins, especially regarding the flutter boundary. Nevertheless, ascertaining the dynamic characteristics of these actuators requires navigating the intricate interactions of multiple linear and nonlinear components. This study introduces a high-fidelity dynamic model designed to effectively address the complexities inherent in an electromechanical fin-actuator system. The model incorporates essential nonlinear elements, such as friction torque and dynamic backlash, along with fundamental components like the gear reducer, ball screw, transmission fork, and servomotor. To clarify these complex interactions, advanced models, namely, the LuGre model, the Bai model (an enhanced version of the Flores model), and the Kahraman model—are integrated into our framework. A comparative analysis is conducted between this complex nonlinear model and a simpler linear counterpart. This comparison is facilitated by rigorous numerical simulations that employ stepped frequency sweeping across various parameter configurations. The findings reveal that the dynamic stiffness characteristics of the fin shaft are markedly complicated under the combined effects of numerous nonlinear factors. Specifically, nonlinear friction originating from the friction ring diminishes response amplitude and seemingly augments the dynamic stiffness of the actuator due to reduced deflections under loads. Conversely, increased clearance among components can lead to a decrement in the dynamic stiffness amplitude of the actuator.

References

1.
Lu
,
J.
,
Wu
,
Z.
, and
Yang
,
C.
,
2024
, “
Active Flutter Suppression of Nonlinear Fin-Actuator System Via Inverse System and Immersion and Invariance Method
,”
Chin. J. Aeronaut.
,
37
(
4
), pp.
343
362
.10.1016/j.cja.2023.10.027
2.
Park
,
C. W.
,
Im
,
B. U.
,
Shin
,
S. J.
,
Yoon
,
B. S.
,
Park
,
J. W.
, and
Yoon
,
K. J.
,
2018
, “
Numerical and Experimental Analyses of a Smart Fin Using Piezoelectric Actuator
,”
J Aircr.
,
55
(
5
), pp.
1817
1830
.10.2514/1.C034739
3.
Jung
,
H. S.
,
Phung
,
H.
,
Park
,
J. H.
,
Yang
,
S. Y.
,
Kim
,
K.
,
Ko
,
J. U.
,
Hwang
,
S. T.
, and
Choi
,
H. R.
,
2021
, “
Development of a Small and Lightweight Missile Fin Control Actuation System Driven by Novel Dielectric Elastomer Actuators
,”
IEEE-ASME Trans. Mechatron.
,
26
(
2
), pp.
1002
1012
.10.1109/TMECH.2020.3014969
4.
Shelan
,
S. F.
,
Hassan
,
M. A.
,
Hendy
,
H.
, and
Elhalwagy
,
Y. Z.
,
2020
, “
Missile Roll Autopilot Redesign Based Advanced Fin Actuation System Modeling
,” Second Novel Intelligent and Leading Emerging Sciences Conference (
NILES
), Giza, Egypt, Oct. 24--26 , pp.
561
566
.10.1109/NILES50944.2020.9257900
5.
Beier
,
T.
,
1977
, “
Prediction and Measurement of the Dynamic Stiffness and Damping of Hydraulic Servo-Actuators
,”
AIAA
Paper No. 1977-420.10.2514/6.1977-420
6.
Yehezkely
,
E.
, and
Karpel
,
M.
,
1996
, “
Nonlinear Flutter Analysis of Missiles With Pneumatic Fin Actuators
,”
J. Guid., Control, Dyn.
,
19
(
3
), pp.
664
670
.10.2514/3.21672
7.
Paek
,
S. K.
, and
Lee
,
I.
,
1996
, “
Flutter Analysis for Control Surface of Launch Vehicle With Dynamic Stiffness
,”
Comput. Struct.
,
60
(
4
), pp.
593
599
.10.1016/0045-7949(95)00425-4
8.
Layton
,
D.
, and
Gaines
,
V.
,
2007
, “
F-22 Actuator Dynamic Stiffness (Impedance) Testing
,” AIAA Paper No. 2007-1792.10.2514/6.2007-1792
9.
Lu
,
J.
,
Li
,
B.
,
Ge
,
W.
,
Tan
,
C.
, and
Sun
,
B.
,
2022
, “
Analysis and Experimental Study on Servo Dynamic Stiffness of Electromagnetic Linear Actuator
,”
Mech. Syst. Sig. Process.
,
169
, p.
108587
.10.1016/j.ymssp.2021.108587
10.
Shin
,
W. H.
,
Lee
,
I.
,
Shin
,
Y. S.
, and
Bae
,
J. S.
,
2007
, “
Nonlinear Aeroelastic Analysis for a Control Fin With an Actuator
,”
J Aircr.
,
44
(
2
), pp.
597
605
.10.2514/1.24721
11.
Kim
,
S. H.
, and
Tahk
,
M. J.
,
2016
, “
Modeling and Experimental Study on the Dynamic Stiffness of an Electromechanical Actuator
,”
J. Spacecr. Rockets
,
53
(
4
), pp.
708
719
.10.2514/1.A33483
12.
Zhang
,
R.
,
Wu
,
Z.
, and
Yang
,
C.
, “
Fin-Actuator System Modeling and Experimental Validating for Aeroelastic Research
,” AIAA Paper No. 2015-1861.10.2514/6.2015-1861
13.
Fu
,
J.
,
Maré
,
J. C.
, and
Fu
,
Y.
,
2017
, “
Modelling and Simulation of Flight Control Electromechanical Actuators With Special Focus on Model Architecting, Multidisciplinary Effects and Power Flows
,”
Chin. J. Aeronaut.
,
30
(
1
), pp.
47
65
.10.1016/j.cja.2016.07.006
14.
Lu
,
J.
,
Wu
,
Z.
, and
Yang
,
C.
,
2021
, “
High-Fidelity Fin–Actuator System Modeling and Aeroelastic Analysis Considering Friction Effect
,”
Appl. Sci.
,
11
(
7
), p.
3057
.10.3390/app11073057
15.
Kim
,
S. H.
, and
Tahk
,
M. J.
,
2018
, “
Dynamic Stiffness Transfer Function of an Electromechanical Actuator Using System Identification
,”
Int. J. Aeronaut. Space Sci.
,
19
(
1
), pp.
208
216
.10.1007/s42405-018-0005-7
16.
Yoo
,
C. H.
,
Lee
,
Y. C.
, and
Lee
,
S. Y.
,
2004
, “
A Robust Controller for an Electro-Mechanical Fin Actuator
,”
Proceedings of the American Control Conference
, Boston, MA, June 30–July 2, pp.
4010
4015
.10.23919/ACC.2004.1383935
17.
Theodossiades
,
S.
, and
Natsiavas
,
S.
,
2000
, “
Non-Linear Dynamics of Gear-Pair Systems With Periodic Stiffness and Backlash
,”
J. Sound Vib.
,
229
(
2
), pp.
287
310
.10.1006/jsvi.1999.2490
18.
Ma
,
H.
,
Zeng
,
J.
,
Feng
,
R.
,
Pang
,
X.
, and
Wen
,
B.
,
2016
, “
An Improved Analytical Method for Mesh Stiffness Calculation of Spur Gears With Tip Relief
,”
Mech. Mach. Theory
,
98
, pp.
64
80
.10.1016/j.mechmachtheory.2015.11.017
19.
Jordan
,
J. M.
,
Blockmans
,
B.
, and
Desmet
,
W.
,
2023
, “
A Linear Formulation for Misaligned Helical Gear Contact Analysis Using Analytical Contact Stiffnesses
,”
Mech. Mach. Theory
,
187
, p.
105373
.10.1016/j.mechmachtheory.2023.105373
20.
Chen
,
Z.
,
Zhou
,
Z.
,
Zhai
,
W.
, and
Wang
,
K.
,
2020
, “
Improved Analytical Calculation Model of Spur Gear Mesh Excitations With Tooth Profile Deviations
,”
Mech. Mach. Theory
,
149
, p.
103838
.10.1016/j.mechmachtheory.2020.103838
21.
Lin
,
B.
,
Okwudire
,
C. E.
, and
Wou
,
J. S.
,
2018
, “
Low Order Static Load Distribution Model for Ball Screw Mechanisms Including Effects of Lateral Deformation and Geometric Errors
,”
ASME J. Mech. Des.
,
140
(
2
), p.
022301
.10.1115/1.4038071
22.
Gao
,
X.
,
Zhang
,
X.
,
Yang
,
J.
,
Fu
,
Z.
,
Wang
,
M.
, and
Zan
,
T.
,
2023
, “
Dynamic Modeling and Analysis on Lateral Vibration of Ball Screw Feed System
,”
Int. J. Adv. Manuf. Technol.
,
124
(
11–12
), pp.
4211
4229
.10.1007/s00170-022-09525-1
23.
Huang
,
R.
,
Hu
,
H.
, and
Zhao
,
Y.
,
2013
, “
Nonlinear Aeroservoelastic Analysis of a Controlled Multiple-Actuated-Wing Model With Free-Play
,”
J. Fluids Struct.
,
42
, pp.
245
269
.10.1016/j.jfluidstructs.2013.06.007
24.
Blaignan
,
V. B.
, and
Skormin
,
V. A.
,
1993
, “
Stiffness Enhancement of Flight Control Actuator
,”
IEEE Trans. Aerosp. Electron. Syst.
,
29
(
2
), pp.
380
390
.10.1109/7.210076
25.
Ren
,
R.
,
Ma
,
X.
,
Yue
,
H.
,
Yang
,
F.
, and
Lu
,
Y.
,
2024
, “
Stiffness Enhancement Methods for Thin-Walled Aircraft Structures: A Review
,”
Thin Wall Struct
,
201
, p.
111995
.10.1016/j.tws.2024.111995
26.
Li
,
C.
,
Yi
,
W.
,
Yin
,
H.
, and
Guan
,
J.
,
2021
, “
Fuzzy PID Control of Electromechanical Actuator System
,”
J. Phys. Conf. Ser.
,
1721
(
1
), p.
012052
.10.1088/1742-6596/1721/1/012052
27.
Liao
,
C.
,
Ma
,
H.
, and
Wu
,
H.
,
2019
, “
Adaptive Control of Series Elastic Actuator Based on RBF Neural Network
,” Proceedings of Chinese Automation Congress (
CAC
), Hangzhou, China, Nov. 22–24, pp.
4365
4369
.10.1109/CAC48633.2019.8996349
28.
Al-Shyyab
,
A.
, and
Kahraman
,
A.
,
2007
, “
A Non-Linear Dynamic Model for Planetary Gear Sets
,”
Proc. Inst. Mech. Eng., Part K J. Multi-Body Dyn.
,
221
(
4
), pp.
567
576
.10.1243/14644193JMBD92
29.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Tribo-Dynamic Model of a Spur Gear Pair
,”
J. Sound Vib.
,
332
(
20
), pp.
4963
4978
.10.1016/j.jsv.2013.04.022
30.
Bai
,
Z. F.
, and
Zhao
,
Y.
,
2013
, “
A Hybrid Contact Force Model of Revolute Joint With Clearance for Planar Mechanical Systems
,”
Int. J. Non-Linear Mech.
,
48
, pp.
15
36
.10.1016/j.ijnonlinmec.2012.07.003
31.
Olsson
,
H.
,
Åström
,
K. J.
,
de Wit
,
C. C.
,
Gäfvert
,
M.
, and
Lischinsky
,
P.
,
1998
, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
(
3
), pp.
176
195
.10.1016/S0947-3580(98)70113-X
32.
de Wit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1993
, “
Dynamic Friction Models and Control Design
,”
Proceedings of American Control Conference
, San Francisco, CA, June 2–4, pp.
1920
1926
.10.23919/ACC.1993.4793212
33.
de Wit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
You do not currently have access to this content.