Abstract

The prediction of the modal properties of structural systems with contact clearances and prestress presents a computational challenge, as the nonlinearity induced by piecewise-linear stiffness eliminates the use of efficient linear modal analysis techniques. The most common approach to obtaining the nonlinear normal modes (NNMs) of these structural systems is a numerical framework that integrates numerical integration, the shooting method, and the pseudo-arc-length continuation scheme. This numerical continuation framework (NCF) computes NNMs through iterative numerical calculations; thus, the computational cost of the nonlinear modal analysis of complex nonlinear systems, particularly piecewise-linear systems, becomes prohibitively expensive as the model size increases. In this study, a hybrid continuation framework (HCF) combining analytic and numerical methods is proposed to enable efficient computations of NNMs for systems with contact boundaries. This new hybrid framework utilizes a semi-analytic method to conduct the iterative shooting procedure; thus, the computational burden of the numerical continuation can be significantly reduced. The proposed method is demonstrated on spring-mass oscillators with contact elements, and the NNMs obtained using the proposed method are validated by those computed using the traditional numerical continuation framework. The modal properties of the systems can be computed using the proposed framework with significant speed-up. Furthermore, the modal properties, including internal resonance and sharp turning in NNM curves, of the piecewise-linear systems are identified and discussed.

References

1.
Shiryayev
,
O. V.
, and
Slater
,
J. C.
,
2010
, “
Detection of Fatigue Cracks Using Random Decrement Signatures
,”
Struct. Health Monit.
,
9
(
4
), pp.
347
360
.10.1177/1475921710361324
2.
Allarà
,
M.
,
2009
, “
A Model for the Characterization of Friction Contacts in Turbine Blades
,”
J. Sound Vib.
,
320
(
3
), pp.
527
544
.10.1016/j.jsv.2008.08.016
3.
He
,
B.
,
Ouyang
,
H.
,
He
,
S.
,
Ren
,
X.
, and
Mei
,
Y.
,
2018
, “
Dynamic Analysis of Integrally Shrouded Group Blades With Rubbing and Impact
,”
Nonlinear Dyn.
,
92
(
4
), pp.
2159
2175
.10.1007/s11071-018-4187-0
4.
Jaumouillé
,
V.
,
Sinou
,
J.-J.
, and
Petitjean
,
B.
,
2010
, “
An Adaptive Harmonic Balance Method for Predicting the Nonlinear Dynamic Responses of Mechanical Systems–Application to Bolted Structures
,”
J. Sound Vib.
,
329
(
19
), pp.
4048
4067
.10.1016/j.jsv.2010.04.008
5.
Zucca
,
S.
,
Firrone
,
C. M.
, and
Gola
,
M. M.
,
2012
, “
Numerical Assessment of Friction Damping at Turbine Blade Root Joints by Simultaneous Calculation of the Static and Dynamic Contact Loads
,”
Nonlinear Dyn.
,
67
(
3
), pp.
1943
1955
.10.1007/s11071-011-0119-y
6.
Donmez
,
A.
, and
Kahraman
,
A.
,
2022
, “
Vibro-Impact Motions of a Three-Degree-of-Freedom Geartrain Subjected to Torque Fluctuations: Model and Experiments
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
12
), p.
121002
.10.1115/1.4055595
7.
Donmez
,
A.
, and
Kahraman
,
A.
,
2022
, “
Characterization of Nonlinear Rattling Behavior of a Gear Pair Through a Validated Torsional Model
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
4
), p.
041006
.10.1115/1.4053367
8.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2020
, “
Method for Controlling Vibration by Exploiting Piecewise-Linear Nonlinearity in Energy Harvesters
,”
Proc. R. Soc. A
,
476
(
2233
), p.
20190491
.10.1098/rspa.2019.0491
9.
Liu
,
H.
,
Lee
,
C.
,
Kobayashi
,
T.
,
Tay
,
C. J.
, and
Quan
,
C.
,
2012
, “
Investigation of a Mems Piezoelectric Energy Harvester System With a Frequency-Widened-Bandwidth Mechanism Introduced by Mechanical Stoppers
,”
Smart Mater. Struct.
,
21
(
3
), p.
035005
.10.1088/0964-1726/21/3/035005
10.
Liu
,
S.
,
Cheng
,
Q.
,
Zhao
,
D.
, and
Feng
,
L.
,
2016
, “
Theoretical Modeling and Analysis of Two-Degree-of-Freedom Piezoelectric Energy Harvester With Stopper
,”
Sens. Actuators A
,
245
, pp.
97
105
.10.1016/j.sna.2016.04.060
11.
Soliman
,
M. S.
,
Abdel-Rahman
,
E. M.
,
El-Saadany
,
E. F.
, and
Mansour
,
R. R.
,
2009
, “
A Design Procedure for Wideband Micropower Generators
,”
J. Microelectromech. Syst.
,
18
(
6
), pp.
1288
1299
.10.1109/JMEMS.2009.2031695
12.
Allemang
,
R. J.
,
1980
,
Investigation of Some Multiple Input/Output Frequency Response Function Experimental Modal Analysis Techniques
,
University of Cincinnati
, Ann Arbor, MI.
13.
Rosenberg
,
R. M.
,
1962
, “
The Normal Modes of Nonlinear n-Degree-of-Freedom Systems
,”
J. Appl. Mech
. 29, pp.
7
14
.10.1115/1.3636501
14.
Vakakis
,
A.
, and
Rand
,
R.
,
1992
, “
Normal Modes and Global Dynamics of a Two-Degree-of-Freedom Non-Linear System–I. low Energies
,”
Int. J. Non-Linear Mech.
,
27
(
5
), pp.
861
874
.10.1016/0020-7462(92)90040-E
15.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1993
, “
Normal Modes for Non-Linear Vibratory Systems
,”
J. Sound Vib.
,
164
(
1
), pp.
85
124
.10.1006/jsvi.1993.1198
16.
Kwarta
,
M.
, and
Allen
,
M. S.
,
2022
, “
Nonlinear Normal Mode Backbone Estimation With Near-Resonant Steady State Inputs
,”
Mech. Syst. Signal Process.
,
162
, p.
108046
.10.1016/j.ymssp.2021.108046
17.
Kwarta
,
M.
, and
Allen
,
M. S.
,
2023
, “
Nonlinear Identification Through Extended Outputs (Nixo) With Numerical and Experimental Validation Using Geometrically Nonlinear Structures
,”
Mech. Syst. Signal Process.
,
200
, p.
110542
.10.1016/j.ymssp.2023.110542
18.
Huang
,
S.-C.
,
Chen
,
H.-W.
, and
Tien
,
M.-H.
,
2023
, “
Predicting Nonlinear Modal Properties by Measuring Free Vibration Responses
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
4
), p.
041005
.10.1115/1.4056949
19.
Tien
,
M.-H.
,
Lee
,
K.-Y.
, and
Huang
,
S.-C.
,
2023
, “
Analyzing the Backbone Curve of Piecewise-Linear Non-Smooth Systems Using a Generalized Bilinear Frequency Approximation Method
,”
Mech. Syst. Signal Process.
,
204
, p.
110765
.10.1016/j.ymssp.2023.110765
20.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2009
, “
Nonlinear Normal Modes, Part ii: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
195
216
.10.1016/j.ymssp.2008.04.003
21.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
,
Hoboken, NJ
.
22.
Chan
,
T. F.
,
1984
, “
Newton-Like Pseudo-Arclength Methods for Computing Simple Turning Points
,”
SIAM J. Sci. Stat. Comput.
,
5
(
1
), pp.
135
148
.10.1137/0905010
23.
Peter
,
S.
,
Schreyer
,
F.
, and
Leine
,
R. I.
,
2019
, “
A Method for Numerical and Experimental Nonlinear Modal Analysis of Nonsmooth Systems
,”
Mech. Syst. Signal Process.
,
120
, pp.
793
807
.10.1016/j.ymssp.2018.11.009
24.
Kikuchi
,
N.
, and
Oden
,
J. T.
,
1988
,
Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods
,
SIAM
,
Philadelphia, PA
.
25.
Alves
,
J.
,
Peixinho
,
N.
,
da Silva
,
M. T.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2015
, “
A Comparative Study of the Viscoelastic Constitutive Models for Frictionless Contact Interfaces in Solids
,”
Mech. Mach. Theory
,
85
, pp.
172
188
.10.1016/j.mechmachtheory.2014.11.020
26.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2019
, “
Analyzing Bilinear Systems Using a New Hybrid Symbolic–Numeric Computational Method
,”
ASME J. Vib. Acoust.
,
141
(
3
), p.
031008
.10.1115/1.4042520
27.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2019
, “
Transient Dynamic Analysis of Cracked Structures With Multiple Contact Pairs Using Generalized HSNC
,”
Nonlinear Dyn.
,
96
(
2
), pp.
1115
1131
.10.1007/s11071-019-04844-7
28.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J.-C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part i: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.10.1016/j.ymssp.2008.04.002
29.
MathWorks Inc.
,
2022
, “
Matlab Version 9.13.0.2193358 (r2022b) Update, 5
,”
MathWorks Inc.
,
Natick, MA
.
30.
Klausmeier
,
C. A.
,
2008
, “
Floquet Theory: A Useful Tool for Understanding Nonequilibrium Dynamics
,”
Theor. Ecology
,
1
(
3
), pp.
153
161
.10.1007/s12080-008-0016-2
You do not currently have access to this content.