Abstract

In a co-simulation setup, the entire system is decomposed into a collection of individual subsystems that are interfaced together, with each subsystem being modeled and integrated separately according to its own requirements. To maintain the interconnectivity and consolidation of the primary system, these subsystems must communicate with each other through the interface and transfer certain information at the end points of a defined time interval termed macro time step. Inside the macro time step, the evolution of the interface variables has to be approximated as information about them will only be available again at the end of the step. In real-time simulations, the size of the macro time step and the accuracy of the approximated interface variables are critical factors; if the interface variables are approximated accurately, the size of the macro time step can be kept large enough to provide interactive rates without loss of accuracy and stability. This work focuses on systems where unilateral contact interactions are important and proposes reduced interface model concepts for such nonsmooth systems. The use of the proposed reduced interface model (RIM) is demonstrated in co-simulation to provide model-based approximation of the interface variables. The advantages of the proposed method are demonstrated through two representative case studies.

References

1.
Raoofian
,
A.
,
Kamali E
,
A.
, and
Taghvaeipour
,
A.
,
2017
, “
Forward Dynamic Analysis of Parallel Robots Using Modified Decoupled Natural Orthogonal Complement Method
,”
Mech. Mach. Theory
,
115
, pp.
197
217
.10.1016/j.mechmachtheory.2017.05.002
2.
Kübler
,
R.
, and
Schiehlen
,
W.
,
2000
, “
Modular Simulation in Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
4
(
2/3
), pp.
107
127
.10.1023/A:1009810318420
3.
Meyer
,
T.
,
Li
,
P.
,
Lu
,
D.
, and
Schweizer
,
B.
,
2018
, “
Implicit co-Simulation Method for Constraint Coupling With Improved Stability Behavior
,”
Multibody Syst. Dyn.
,
44
(
2
), pp.
135
161
.10.1007/s11044-018-9632-9
4.
Schweizer
,
B.
,
Lu
,
D.
, and
Li
,
P.
,
2016
, “
Co-Simulation Method for Solver Coupling With Algebraic Constraints Incorporating Relaxation Techniques
,”
Multibody Syst. Dyn.
,
36
(
1
), pp.
1
36
.10.1007/s11044-015-9464-9
5.
Li
,
P.
,
Yuan
,
Q.
,
Lu
,
D.
,
Meyer
,
T.
, and
Schweizer
,
B.
,
2020
, “
Improved Explicit co-Simulation Methods Incorporating Relaxation Techniques
,”
Archive Appl. Mech.
,
90
(
1
), pp.
17
46
.10.1007/s00419-019-01597-y
6.
Schweizer
,
B.
, and
Lu
,
D.
,
2014
, “
Semi-Implicit co-Simulation Approach for Solver Coupling
,”
Archive Appl. Mech.
,
84
(
12
), pp.
1739
1769
.10.1007/s00419-014-0883-5
7.
Schweizer
,
B.
, and
Lu
,
D.
,
2015
, “
Predictor/Corrector co-Simulation Approaches for Solver Coupling With Algebraic Constraints
,”
ZAMM - J. Appl. Math. Mech./Z. Für Angew. Mathematik Und Mechanik
,
95
(
9
), pp.
911
938
.10.1002/zamm.201300191
8.
Schweizer
,
B.
, and
Lu
,
D.
,
2015
, “
Stabilized Index-2 co-Simulation Approach for Solver Coupling With Algebraic Constraints
,”
Multibody Syst. Dyn.
,
34
(
2
), pp.
129
161
.10.1007/s11044-014-9422-y
9.
Zhang
,
R.
,
Zhang
,
H.
,
Zanoni
,
A.
,
Tasora
,
A.
, and
Masarati
,
P.
,
2022
, “
Explicit Smooth/Nonsmooth Cosimulation Using Kinematic Constraints
,”
Multibody Syst. Dyn.
,
55
(
1–2
), pp.
3
37
.10.1007/s11044-022-09829-w
10.
Arnold
,
M.
,
Burgermeister
,
B.
,
Führer
,
C.
,
Hippmann
,
G.
, and
Rill
,
G.
,
2011
, “
Numerical Methods in Vehicle System Dynamics: State of the Art and Current Developments
,”
Veh. Syst. Dyn.
,
49
(
7
), pp.
1159
1207
.10.1080/00423114.2011.582953
11.
Peiret
,
A.
,
González
,
F.
,
Kövecses
,
J.
, and
Teichmann
,
M.
,
2020
, “
Co-Simulation of Multibody Systems With Contact Using Reduced Interface Models
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
4
), p.
041001
.10.1115/1.4046052
12.
Fancello
,
M.
,
Masarati
,
P.
, and
Morandini
,
M.
,
2013
, “
Adding Non-Smooth Analysis Capabilities to General-Purpose Multibody Dynamics by co-Simulation
,”
ASME
Paper No. DETC2013-12208.10.1115/DETC2013-12208
13.
Oberschelp
,
O.
, and
Vocking
,
H.
,
2004
, “
Multirate Simulation of Mechatronic Systems
,”
Proceedings of the IEEE International Conference on Mechatronics, ICM '04
, Istanbul, Turkey, June 5, pp.
404
409
.10.1109/ICMECH.2004.1364473
14.
Arnold
,
M.
,
2009
,
Numerical Methods for Simulation in Applied Dynamics
,
Springer Vienna
,
Vienna
, pp.
191
246
.https://link.springer.com/chapter/10.1007/978-3-211-89548-1_5
15.
Feki
,
A. B. K.-E.
,
Duval
,
L.
,
Faure
,
C.
,
Simon
,
D.
, and
Gaid
,
M. B.
,
2017
, “
Choptrey: Contextual Online Polynomial Extrapolation for Enhanced Multi-Core Co-Simulation of Complex Systems
,”
Simulation
,
93
(
3
), pp.
185
200
.10.1177/0037549716684026
16.
Benedikt
,
M.
, and
Hofer
,
A.
,
2013
, “
Guidelines for the Application of a Coupling Method for Non-Iterative co-Simulation
,”
Eighth EUROSIM Congress on Modelling and Simulation
, Cardiff, UK, Sept. 10–13, pp.
244
249
.10.1109/EUROSIM.2013.52
17.
Sadjina
,
S.
,
Kyllingstad
,
L. T.
,
Skjong
,
S.
, and
Pedersen
,
E.
,
2017
, “
Energy Conservation and Power Bonds in co-Simulations: Non-Iterative Adaptive Step Size Control and Error Estimation
,”
Eng. Comput.
,
33
(
3
), pp.
607
620
.10.1007/s00366-016-0492-8
18.
Mohtat
,
A.
,
Arbatani
,
S.
, and
Kövecses
,
J.
,
2017
, “
Enhancing the Stability of Co-Simulation Via an Energy-Leak Monitoring and Dissipation Framework
,”
IUTAM Symposium on Co-Simulation and Solver Coupling
,
Darmstadt, Germany
.
19.
Peiret
,
A.
,
González
,
F.
,
Kövecses
,
J.
, and
Teichmann
,
M.
,
2018
, “
Multibody System Dynamics Interface Modelling for Stable Multirate Co-Simulation of Multiphysics Systems
,”
Mechanism Mach. Theory
,
127
, pp.
52
72
.10.1016/j.mechmachtheory.2018.04.016
20.
Peiret
,
A.
,
González
,
F.
,
Kövecses
,
J.
,
Teichmann
,
M.
, and
Enzenhoefer
,
A.
,
2020
, “
Model-Based Coupling for Co-Simulation of Robotic Contact Tasks
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
5756
5763
.10.1109/LRA.2020.3010204
21.
Dai
,
X.
,
Raoofian
,
A.
,
Kövecses
,
J.
, and
Teichmann
,
M.
,
2024
, “
Model-Based Co-Simulation of Flexible Mechanical Systems With Contacts Using Reduced Interface Models
,”
IEEE Rob. Autom. Lett.
,
9
(
1
), pp.
239
246
.10.1109/LRA.2023.3332501
22.
Dai
,
X.
,
Raoofian
,
A.
,
Kövecses
,
J.
, and
Teichmann
,
M.
,
2023
, “
Model-Based Co-Simulation of Flexible Robotic Systems
,”
ECCOMAS Thematic Conference on Multibody Dynamics, Instituto Superior Tecnico
,
Lisbon, Portugal
.https://multibody2023.tecnico.ulisboa.pt/prog_MULTIBODY_WEB/MULTBODY2023_ABSTRACTS/ID_184_318_Model-based%20Co-simulation%20of%20Flexible%20Robotic%20Systems.pdf
23.
Raoofian
,
A.
,
Peiret
,
A.
,
Kövecses
,
J.
, and
Teichmann
,
M.
,
2022
, “
Non-Smooth Unilateral Reduced Models for Co-Simulation of Mechanical Systems
,”
Mech. Mach. Theory
,
173
, p.
104829
.10.1016/j.mechmachtheory.2022.104829
24.
Acary
,
V.
, and
Brogliato
,
B.
,
2008
,
Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics
,
Springer Science & Business Media
, Springer Berlin, Heidelberg.
25.
Anitescu
,
M.
, and
Potra
,
F. A.
,
1997
, “
Formulating Dynamic Multi-Rigid-Body Contact Problems With Friction as Solvable Linear Complementarity Problems
,”
Nonlinear Dyn.
,
14
(
3
), pp.
231
247
.10.1023/A:1008292328909
26.
Anitescu
,
M.
, and
Potra
,
F. A.
,
2002
, “
A Time-Stepping Method for Stiff Multibody Dynamics With Contact and Friction
,”
Int. J. Numer. Methods Eng.
,
55
(
7
), pp.
753
784
.10.1002/nme.512
27.
Kövecses
,
J.
,
2008
, “
Dynamics of Mechanical Systems and the Generalized Free-Body Diagram–Part I: General Formulation
,”
ASME J. Appl. Mech.
,
75
(
6
), p.
061012
.10.1115/1.2965372
28.
Naya
,
M. A.
,
Cuadrado
,
J.
,
Dopico
,
D.
, and
Lugris
,
U.
,
2011
, “
An Efficient Unified Method for the Combined Simulation of Multibody and Hydraulic Dynamics: Comparison With Simplified and Co-Integration Approaches
,”
Arch. Mech. Eng.
,
58
(
2
), pp.
223
243
.10.2478/v10180-011-0016-4
29.
Cardona
,
A.
, and
Geradin
,
M.
,
1990
, “
Modeling of a Hydraulic Actuator in Flexible Machine Dynamics Simulation
,”
Mech. Mach. Theory
,
25
(
2
), pp.
193
207
.10.1016/0094-114X(90)90121-Y
You do not currently have access to this content.