Abstract

In multibody dynamics, formulating the equations of motion in absolute Cartesian coordinates results in a set of index-3 differential algebraic equations (DAEs). In this work, we present an approach that bypasses the DAE problem by partitioning the velocities in the system into dependent and independent coordinates, thereby reducing the task of producing the time evolution of the mechanical system to one of solving a set of ordinary differential equations (ODEs). In this approach, the independent coordinates are integrated directly, while the dependent coordinates are recovered through the kinematic constraint equations at the position and velocity levels. Notably, Lie group integration is employed to directly obtain the orientation matrix A at each time-step of the simulation. This eliminates the need to choose generalized coordinates to capture the orientation of a body, as the matrix A is a by-product of the solution algorithm. Herein, we outline the new approach and demonstrate it in conjunction with four mechanisms: a single pendulum, a double pendulum, a four-link mechanism, and a slider crank. We report on the convergence order behavior of the proposed method and compare its performance with an established method that combines coordinate partitioning with an Euler parameter formulation. The Python code developed to generate the reported results is open-source and available in a public repository for reproducibility studies.

References

1.
Taves
,
J.
,
Kissel
,
A.
, and
Negrut
,
D.
,
2021
, “
Dwelling on the Connection Between so(3) and Rotation Matrices in Rigid Multibody Dynamics. Part 1: Description of an Index-3 DAE Solution Approach
,”
ASME
Paper No. DETC2021-72057.10.1115/DETC2021-72057
2.
Taves
,
J.
,
Kissel
,
A.
, and
Negrut
,
D.
,
2021
, “
Dwelling on the Connection Between so(3) and Rotation Matrices in Rigid Multibody Dynamics. Part 2: Comparison Against Formulations Using Euler Parameters or Euler Angles
,”
ASME
Paper No. DETC2021-72076.10.1115/DETC2021-72076
3.
Taves
,
J.
,
Kissel
,
A.
, and
Negrut
,
D.
,
2020
, “
On an Exponential Map Approach for Rigid Body Kinematics and Dynamics Analysis
,”
Simulation-Based Engineering Laboratory, University of Wisconsin-Madison
, Report No.
TR-2020-08
.https://sbel.wisc.edu/wp-content/uploads/sites/569/2021/05/TR-2020-08-1.pdf
4.
Kissel
,
A.
,
Taves
,
J.
, and
Negrut
,
D.
,
2022
, “
Constrained Multibody Kinematics and Dynamics in Absolute Coordinates: A Discussion of Three Approaches to Representing Rigid Body Rotation
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
10
), p.
101008
.10.1115/1.4055140
5.
Wieloch
,
V.
, and
Arnold
,
M.
,
2021
, “
BDF Integrators for Constrained Mechanical Systems on Lie Groups
,”
J. Comput. Appl. Math.
,
387
, p.
112517
.10.1016/j.cam.2019.112517
6.
Wehage
,
R. A.
, and
Haug
,
E. J.
,
1982
, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
247
255
.10.1115/1.3256318
7.
Betsch
,
P.
, and
Leyendecker
,
S.
,
2006
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part II: Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
67
(
4
), pp.
499
552
.10.1002/nme.1639
8.
Haug
,
E. J.
,
2021
, “
Multibody Dynamics on Differentiable Manifolds
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
4
), p.
041003
.10.1115/1.4049995
9.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2015
, “
Lie-Group Integration Method for Constrained Multibody Systems in State Space
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
275
305
.10.1007/s11044-014-9439-2
10.
Negrut
,
D.
, and
Ortiz
,
J. L.
,
2006
, “
A Practical Approach for the Linearization of the Constrained Multibody Dynamics Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
230
239
.10.1115/1.2198876
11.
Hairer
,
E.
,
Nørsett
,
S. P.
, and
Wanner
,
G.
,
1993
,
Solving Ordinary Differential Equations I. Nonstiff Problems
, Vol.
18
.
Springer
,
Berlin
.
12.
Ascher
,
U. M.
, and
Petzold
,
L. R.
,
1998
,
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
,
Siam
,
Philadelphia, PA
.
13.
Haug
,
E. J.
,
1989
,
Computer-Aided Kinematics and Dynamics of Mechanical Systems Volume-I
,
Prentice Hall
,
Englewood Cliffs, NJ
.
14.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
,
1996
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
, 2nd ed.,
Siam
,
Philadelphia, PA
.
15.
Hairer
,
E.
, and
Wanner
,
G.
,
1996
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
Springer, New York
.
16.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
,
2007
, “
On the Use of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics
,”
ASME
Paper No. DETC2005-8509610.1115/DETC2005-85096
17.
Marsden
,
J. E.
, and
Ratiu
,
T. S.
,
1994
,
Introduction to Mechanics and Symmetry
, Vol.
17
,
Springer-Verlag
,
New York
.
18.
Varadarajan
,
V.
,
2013
,
Lie Groups, Lie Algebras, and Their Representations
, Vol.
102
,
Springer Science & Business
,
New York
.
19.
Müller
,
A.
, and
Maisser
,
P.
,
2003
, “
A Lie-Group Formulation of Kinematics and Dynamics of Constrained MBS and Its Application to Analytical Mechanics
,”
Multibody Syst. Dyn.
,
9
(
4
), pp.
311
352
.10.1023/A:1023321630764
20.
Park
,
J.
, and
Chung
,
W.-K.
,
2005
, “
Geometric Integration on Euclidean Group With Application to Articulated Multibody Systems
,”
IEEE Trans. Rob.
,
21
(
5
), pp.
850
863
.10.1109/TRO.2005.852253
21.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
, pp.
121
137
.10.1016/j.mechmachtheory.2011.07.017
22.
Euler
,
L.
,
1776
, “
Formulae Generales Pro Translatione Quacunque Corporum Rigidorum
,” Novi Commentarii Academiae Scientiarum Petropolitanae pro Anno MDCCLXXV, Tom. XX, pp.
189
207
.https://scholarlycommons.pacific.edu/cgi/viewcontent.cgi?article=1477&context=euler-works
23.
Rodrigues
,
O.
,
1816
, “
De L'attraction Des Sphéroides, Correspondence Sur L'école Impériale Polytechnique
,” Ph.D. thesis,
Thesis for the Faculty of Science of the University of Paris
.
24.
Iserles
,
A.
,
Munthe-Kaas
,
H.
,
Nørsett
,
S.
, and
Zanna
,
A.
,
2000
, “
Lie-Group Methods
,”
Acta Numer.
,
9
, pp.
215
365
.10.1017/S0962492900002154
25.
Gelfand
,
I. M.
, and
Fomin
,
S. V.
,
2000
,
Calculus of Variations (Dover Books on Mathematics)
,
Dover Publications
,
Mineola, NY
.
26.
Fang
,
L.
,
Kissel
,
A.
,
Zhang
,
R.
, and
Negrut
,
D.
,
2022
, “
On the Use of Half-Implicit Numerical Integration in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
1
), p.
014501
.10.1115/1.4056183
27.
Taves
,
J.
,
Kissel
,
A.
, and
Negrut
,
D.
,
2021
, “
Software and Models for the r A Formulation
,” GitHub, San Francisco, CA, accessed Apr. 8, 2024, https://github.com/uwsbel/public-metadata/tree/master/2021/ASME/rA-formulation.
You do not currently have access to this content.