Abstract

This paper proposes a method for identifying an initial gap in piecewise-linear (PWL) systems from data. Piecewise-linear systems appear in many engineered systems such as degraded mechanical systems and infrastructures and are known to show strong nonlinearities. To analyze the behavior of such piecewise-linear systems, it is necessary to identify the initial gap, at which the system behavior switches. The proposed method identifies the initial gap by discovering the governing equations using sparse regression and calculating the gap based on the universal approximation theorem. A key step to achieve this is to approximate a piecewise-linear function by a finite sum of piecewise-linear functions in sparse regression. The equivalent gap is then calculated from the coefficients of the multiple piecewise-linear functions and their respective switching points in the obtained equation. The proposed method is first applied to a numerical model to confirm its applicability to piecewise-linear systems. Experimental validation of the proposed method has then been conducted with a simple mass-spring-hopping system, where the method successfully identifies the initial gap in the system with high accuracy.

References

1.
Skurativskyi
,
S.
,
Kudra
,
G.
,
Witkowski
,
K.
, and
Awrejcewicz
,
J.
,
2019
, “
Bifurcation Phenomena and Statistical Regularities of Forced Impacting Oscillator
,”
Nonlinear Dyn.
,
98
(
3
), pp.
1795
1806
.10.1007/s11071-019-05286-x
2.
Aye
,
W. P. P.
, and
Htike
,
T. M.
,
2019
, “
Inverse Method for Identification of Edge Crack Using Correlation Model
,”
SN Appl. Sci.
,
1
, pp.
1
6
.10.1007/s42452-019-0618-x
3.
Saito
,
A.
,
Castanier
,
M. P.
,
Pierre
,
C.
, and
Poudou
,
O.
,
2009
, “
Efficient Nonlinear Vibration Analysis of the Forced Response of Rotating Cracked Blades
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
1
), p.
011005
.10.1115/1.3007908
4.
Saito
,
A.
,
2018
, “
Nonlinear Resonances of Chains of Thin Elastic Beams With Intermittent Contact
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
8
), p.
081005
.10.1115/1.4040540
5.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Nathan Kutz
,
J.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
113
(
15
), pp.
3932
3937
.10.1073/pnas.1517384113
6.
Mangan
,
N. M.
,
Askham
,
T.
,
Brunton
,
S. L.
,
Kutz
,
J. N.
, and
Proctor
,
J. L.
,
2019
, “
Model Selection for Hybrid Systems Via Sparse Regression
,”
Proc. R. Soc. A
,
475
(
2223
), p.
20180534
.10.1098/rspa.2018.0534
7.
Kaiser
,
E.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2018
, “
Sparse Identification of Nonlinear Dynamics for Model Predictive Control in the Low-Data Limit
,”
Proc. R. Soc. A
,
474
(
2219
), p.
20180335
.10.1098/rspa.2018.0335
8.
Khatiry Goharoodi
,
S.
,
Dekemele
,
K.
,
Dupre
,
L.
,
Loccufier
,
M.
, and
Crevecoeur
,
G.
,
2018
, “
Sparse Identification of Nonlinear Duffing Oscillator From Measurement Data
,”
Proceedings of the 5th IFAC Conference of Chaotic Systems CHAOS 2018
, Eindhoven, The Netherlands, Oct. 30–Nov. 1, pp.
162
167
.
9.
Ren
,
Z.
,
Han
,
X.
,
Yu
,
X.
,
Skjetne
,
R.
,
Leira
,
B. J.
,
Sævik
,
S.
, and
Zhu
,
M.
,
2023
, “
Data-Driven Simultaneous Identification of the 6DOF Dynamic Model and Wave Load for a Ship in Waves
,”
Mech. Syst. Signal Process.
,
184
, p.
109422
.10.1016/j.ymssp.2022.109422
10.
Huang
,
S.-C.
,
Chen
,
H.-W.
, and
Tien
,
M.-H.
,
2023
, “
Predicting Nonlinear Modal Properties by Measuring Free Vibration Responses
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
4
), p.
041005
.10.1115/1.4056949
11.
Sun
,
Y.
,
2021
, “
Experimental Modeling and Amplitude-Frequency Response Analysis of a Piecewise Linear Vibration System
,”
IEEE Access
,
9
, pp.
4279
4290
.10.1109/ACCESS.2020.3047655
12.
Shahhosseini
,
A.
,
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2023
, “
Efficient Hybrid Symbolic-Numeric Computational Method for Piecewise Linear Systems With Coulomb Friction
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
7
), p.
071004
.10.1115/1.4062203
13.
Saito
,
A.
, and
Tanaka
,
M.
,
2023
, “
Data-Driven Model Order Reduction for Structures With Piecewise Linear Nonlinearity Using Dynamic Mode Decomposition
,”
Nonlinear Dyn.
,
111
(
22
), pp.
20597
20616
.10.1007/s11071-023-08958-x
14.
Li
,
B.
,
Han
,
L.
,
Jin
,
W.
, and
Quan
,
S.
,
2016
, “
Theoretical and Experimental Identification of Cantilever Beam With Clearances Using Statistical and Subspace-Based Methods
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031003
.10.1115/1.4031193
15.
Liu
,
J.
, and
Li
,
B.
,
2016
, “
Theoretical and Experimental Identification of Clearance Nonlinearities for a Continuum Structure
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041019
.10.1115/1.4033005
16.
Huang
,
X.
,
Xu
,
J.
, and
Wang
,
S.
,
2012
, “
Nonlinear System Identification With Continuous Piecewise Linear Neural Network
,”
Neurocomputing
,
77
(
1
), pp.
167
177
.10.1016/j.neucom.2011.09.001
17.
Li
,
Q.
,
Dietrich
,
F.
,
Bollt
,
E. M.
, and
Kevrekidis
,
I. G.
,
2017
, “
Extended Dynamic Mode Decomposition With Dictionary Learning: A Data-Driven Adaptive Spectral Decomposition of the Koopman Operator
,”
Chaos
,
27
(
10
), p.
103111
.10.1063/1.4993854
18.
Cybenko
,
G.
,
1989
, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control, Signals, Syst.
,
2
(
4
), pp.
303
314
.10.1007/BF02551274
19.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Networks
,
2
(
5
), pp.
359
366
.10.1016/0893-6080(89)90020-8
20.
Mhaskar
,
H. N.
, and
Micchelli
,
C. A.
,
1992
, “
Approximation by Superposition of Sigmoidal and Radial Basis Functions
,”
Adv. Appl. Math.
,
13
(
3
), pp.
350
373
.10.1016/0196-8858(92)90016-P
21.
Sonoda
,
S.
, and
Murata
,
N.
,
2017
, “
Neural Network With Unbounded Activation Functions is Universal Approximator
,”
Appl. Comput. Harmonic Anal.
,
43
(
2
), pp.
233
268
.10.1016/j.acha.2015.12.005
22.
Akaike
,
H.
,
1973
, “
Information Theory and an Extension of the Maximum Likelihood Principle
,”
Proceedings of the Second International Symposium on Information Theory
,
Akademiai Kiado
,
Budapest, Hungary
, Sept. 2–8, pp.
267
281
.
You do not currently have access to this content.