Abstract

Experimental research has investigated the non-Newtonian fluid augmentation of fabric barrier materials, aimed at adding impact energy dissipation mechanisms and thereby improving ballistic performance. Published experimental results on the effectiveness of these augmentations are mixed, and numerical models supporting complimentary modeling research are lacking, primarily due to the multiple geometric and material nonlinearities present in the system. The combination of Hamiltonian mechanics with hybrid particle-element kinematics offers a very general modeling approach to impact simulation for these systems, one which includes interstitial fluid–structure interactions, the yarn level dynamics of projectile impacts, and yarn fracture without the introduction of slidelines and without mass or energy discard. Three-dimensional (3D) impact simulations show good agreement with published experiments for magnetorheological (MR) fluid-saturated Kevlar, including fabric tested under bulk field excitation of the target region and magnetomechanically edge-clamped fabric sliding in an excited air gap. The Hamiltonian method employed to develop the system-level model allows for computationally efficient partitioning of the modeled physics while maintaining a thermodynamically consistent formulation.

References

1.
David
,
N. V.
,
Gao
,
X.-L.
, and
Zheng
,
J. Q.
,
2009
, “
Ballistic Resistant Body Armor: Contemporary and Prospective Materials and Related Protection Mechanisms
,”
ASME Appl. Mech. Rev.
,
62
(
5
), p.
050802
.10.1115/1.3124644
2.
Pereira
,
J. M.
, and
Revilock
,
D. M.
,
2009
, “
Ballistic Impact Response of Kevlar 49 and Zylon Under Conditions Representing Jet Engine Fan Containment
,”
J. Aerosp. Eng.
,
22
(
3
), pp.
240
248
.10.1061/(ASCE)0893-1321(2009)22:3(240)
3.
Siengchin
,
S.
,
2023
, “
A Review on Lightweight Materials for Defence Applications: Present and Future Developments
,”
Def. Technol.
,
24
(
2023
), pp.
1
17
.10.1016/j.dt.2023.02.025
4.
Abtew
,
M. A.
,
Boussu
,
F.
,
Bruniaux
,
P.
,
Loghin
,
C.
, and
Cristian
,
I.
,
2019
, “
Ballistic Impact Mechanisms – A Review on Textiles and Fibre-Reinforced Composites Impact Responses
,”
Compos. Struct.
,
223
(
2019
), p.
110966
.10.1016/j.compstruct.2019.110966
5.
Mawkhlieng
,
U.
, and
Majumdar
,
A.
,
2019
, “
Soft Body Armour
,”
Text. Prog.
,
51
(
2
), pp.
139
224
.10.1080/00405167.2019.1692583
6.
Lee
,
Y. S.
,
Wetzel
,
E. D.
, and
Wagner
,
N. J.
,
2003
, “
The Ballistic Impact Characteristics of Kevlar® Woven Fabrics Impregnated With a Colloidal Shear Thickening Fluid
,”
J. Mater. Sci.
,
38
(
13
), pp.
2825
2833
.10.1023/A:1024424200221
7.
Rabb
,
R. J.
, and
Fahrenthold
,
E. P.
,
2011
, “
Evaluation of Shear-Thickening-Fluid Kevlar for Large-Fragment-Containment Applications
,”
J. Aircr.
,
48
(
1
), pp.
230
234
.10.2514/1.C031081
8.
Gürgen
,
S.
,
Kuşhan
,
M. C.
, and
Li
,
W.
,
2017
, “
Shear Thickening Fluids in Protective Applications: A Review
,”
Prog. Polym. Sci.
,
75
(
2017
), pp.
48
72
.10.1016/j.progpolymsci.2017.07.003
9.
Son
,
K. J.
, and
Fahrenthold
,
E. P.
,
2012
, “
Evaluation of Magnetorheological Fluid Augmented Fabric as a Fragment Barrier Material
,”
Smart Mater. Struct.
,
21
(
7
), p.
075012
.10.1088/0964-1726/21/7/075012
10.
Son
,
K. J.
, and
Fahrenthold
,
E. P.
,
2018
, “
Magnetorheological Damping of Fragment Barrier Suspension Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
140
, p.
091002
.10.1115/1.4039414
11.
Rabb
,
R. J.
, and
Fahrenthold
,
E. P.
,
2010
, “
Impact Dynamics Simulation for Multilayer Fabrics
,”
Int. J. Numer. Methods Eng.
,
83
(
5
), pp.
537
557
.10.1002/nme.2841
12.
Rabb
,
R. J.
, and
Fahrenthold
,
E. P.
,
2011
, “
Simulation of Large Fragment Impacts on Shear-Thickening Fluid Kevlar Fabric Barriers
,”
J. Aircr.
,
48
(
6
), pp.
2059
2067
.10.2514/1.C031445
13.
Shimek
,
M. E.
, and
Fahrenthold
,
E. P.
,
2015
, “
Impact Dynamics Simulation for Multilayer Fabrics of Various Weaves
,”
AIAA J.
,
53
(
7
), pp.
1793
1811
.10.2514/1.J053504
14.
Sockalingam
,
S.
,
Chowdhury
,
S. C.
,
Gillespie
,
J. W.
, and
Keefe
,
M.
,
2017
, “
Recent Advances in Modeling and Experiments of Kevlar Ballistic Fibrils, Fibers, Yarns and Flexible Woven Textile Fabrics – A Review
,”
Text. Res. J.
,
87
(
8
), pp.
984
1010
.10.1177/0040517516646039
15.
Fahrenthold
,
E. P.
, and
Horban
,
B. A.
,
1999
, “
A Hybrid Particle-Finite Element Method for Hypervelocity Impact Simulation
,”
Int. J. Impact Eng.
,
23
(
1
), pp.
237
248
.10.1016/S0734-743X(99)00076-7
16.
Fahrenthold
,
E. P.
, and
Horban
,
B. A.
,
2001
, “
An Improved Hybrid Particle-Element Method for Hypervelocity Impact Simulation
,”
Int. J. Impact Eng.
,
26
(
1–10
), pp.
169
178
.10.1016/S0734-743X(01)00079-3
17.
Park
,
Y.-K.
, and
Fahrenthold
,
E. P.
,
2005
, “
A Kernel Free Particle-Finite Element Method for Hypervelocity Impact Simulation
,”
Int. J. Numer. Methods Eng.
,
63
(
5
), pp.
737
759
.10.1002/nme.1299
18.
Cheng
,
M.
,
Chen
,
W.
, and
Weerasooriya
,
T.
,
2004
, “
Experimental Investigation of the Transverse Mechanical Properties of a Single Kevlar® KM2 Fiber
,”
Int. J. Solids Struct.
,
41
(
22–23
), pp.
6215
6232
.10.1016/j.ijsolstr.2004.05.016
19.
Ivanov
,
I.
, and
Tabiei
,
A.
,
2004
, “
Loosely Woven Fabric Model With Viscoelastic Crimped Fibres for Ballistic Impact Simulations
,”
Int. J. Numer. Methods Eng.
,
61
(
10
), pp.
1565
1583
.10.1002/nme.1113
20.
Karaoğlan
,
L.
,
Noor
,
A. K.
, and
Kim
,
Y. H.
,
1997
, “
Frictional Contact/Impact Response of Textile Composite Structures
,”
Compos. Struct.
,
37
(
2
), pp.
269
280
.10.1016/S0263-8223(97)80018-9
21.
King
,
M. J.
,
Jearanaisilawong
,
P.
, and
Socrate
,
S.
,
2005
, “
A Continuum Constitutive Model for the Mechanical Behavior of Woven Fabrics
,”
Int. J. Solids Struct.
,
42
(
13
), pp.
3867
3896
.10.1016/j.ijsolstr.2004.10.030
22.
Lim
,
C. T.
,
Shim
,
V. P. W.
, and
Ng
,
Y. H.
,
2003
, “
Finite-Element Modeling of the Ballistic Impact of Fabric Armor
,”
Int. J. Impact Eng.
,
28
(
1
), pp.
13
31
.10.1016/S0734-743X(02)00031-3
23.
Nadler
,
B.
,
Papadopoulos
,
P.
, and
Steigmann
,
D. J.
,
2006
, “
Multiscale Constitutive Modeling and Numerical Simulation of Fabric Material
,”
Int. J. Solids Struct.
,
43
(
2
), pp.
206
221
.10.1016/j.ijsolstr.2005.05.020
24.
Shahkarami
,
A.
, and
Vaziri
,
R.
,
2007
, “
A Continuum Shell Finite Element Model for Impact Simulation of Woven Fabrics
,”
Int. J. Impact Eng.
,
34
(
1
), pp.
104
119
.10.1016/j.ijimpeng.2006.06.010
25.
Tabiei
,
A.
, and
Ivanov
,
I.
,
2002
, “
Computational Micro-Mechanical Model of Flexible Woven Fabric for Finite Element Impact Simulation
,”
Int. J. Numer. Methods Eng.
,
53
(
6
), pp.
1259
1276
.10.1002/nme.321
26.
Duan
,
Y.
,
Keefe
,
M.
,
Bogetti
,
T. A.
, and
Cheeseman
,
B. A.
,
2005
, “
Modeling the Role of Friction During Ballistic Impact of a High-Strength Plain-Weave Fabric
,”
Compos. Struct.
,
68
(
3
), pp.
331
337
.10.1016/j.compstruct.2004.03.026
27.
Duan
,
Y.
,
Keefe
,
M.
,
Bogetti
,
T. A.
,
Cheeseman
,
B. A.
, and
Powers
,
B.
,
2006
, “
A Numerical Investigation of the Influence of Friction on Energy Absorption by a High-Strength Fabric Subjected to Ballistic Impact
,”
Int. J. Impact Eng.
,
32
(
8
), pp.
1299
1312
.10.1016/j.ijimpeng.2004.11.005
28.
Barauskas
,
R.
, and
Abraitienė
,
A.
,
2007
, “
Computational Analysis of Impact of a Bullet Against the Multilayer Fabrics in LS-DYNA
,”
Int. J. Impact Eng.
,
34
(
7
), pp.
1286
1305
.10.1016/j.ijimpeng.2006.06.002
29.
Billon
,
H. H.
, and
Robinson
,
D. J.
,
2001
, “
Models for the Ballistic Impact of Fabric Armour
,”
Int. J. Impact Eng.
,
25
(
4
), pp.
411
422
.10.1016/S0734-743X(00)00049-X
30.
Novotny
,
W. R.
,
Cepuš
,
E.
,
Shahkarami
,
A.
,
Vaziri
,
R.
, and
Poursartip
,
A.
,
2007
, “
Numerical Investigation of the Ballistic Efficiency of Multi-Ply Fabric Armours During the Early Stages of Impact
,”
Int. J. Impact Eng.
,
34
(
1
), pp.
71
88
.10.1016/j.ijimpeng.2006.07.001
31.
Shim
,
V. P. W.
,
Tan
,
V. B. C.
, and
Tay
,
T. E.
,
1995
, “
Modelling Deformation and Damage Characteristics of Woven Fabric Under Small Projectile Impact
,”
Int. J. Impact Eng.
,
16
(
4
), pp.
585
605
.10.1016/0734-743X(94)00063-3
32.
Tan
,
V. B. C.
,
Shim
,
V. P. W.
, and
Zeng
,
X.
,
2005
, “
Modelling Crimp in Woven Fabrics Subjected to Ballistic Impact
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
561
574
.10.1016/j.ijimpeng.2005.06.008
33.
Tan
,
V. B. C.
, and
Ching
,
T. W.
,
2006
, “
Computational Simulation of Fabric Armour Subjected to Ballistic Impacts
,”
Int. J. Impact Eng.
,
32
(
11
), pp.
1737
1751
.10.1016/j.ijimpeng.2005.05.006
34.
Zeng
,
X. S.
,
Tan
,
V. B. C.
, and
Shim
,
V. P. W.
,
2006
, “
Modelling Inter-Yarn Friction in Woven Fabric Armour
,”
Int. J. Numer. Methods Eng.
,
66
(
8
), pp.
1309
1330
.10.1002/nme.1596
35.
Breen
,
D. E.
,
House
,
D. H.
, and
Wozny
,
M. J.
,
1994
, “
A Particle-Based Model for Simulating the Draping Behavior of Woven Cloth
,”
Text. Res. J.
,
64
(
11
), pp.
663
685
.10.1177/004051759406401106
36.
Zohdi
,
T. I.
, and
Powell
,
D.
,
2006
, “
Multiscale Construction and Large-Scale Simulation of Structural Fabric Undergoing Ballistic Impact
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
1–3
), pp.
94
109
.10.1016/j.cma.2005.01.011
37.
Wang
,
Y.
, and
Sun
,
X.
,
2001
, “
Digital-Element Simulation of Textile Processes
,”
Compos. Sci. Technol.
,
61
(
2
), pp.
311
319
.10.1016/S0266-3538(00)00223-2
38.
Miao
,
Y.
,
Zhou
,
E.
,
Wang
,
Y.
, and
Cheeseman
,
B. A.
,
2008
, “
Mechanics of Textile Composites: Micro-Geometry
,”
Compos. Sci. Technol.
,
68
(
7–8
), pp.
1671
1678
.10.1016/j.compscitech.2008.02.018
39.
Zhou
,
G.
,
Sun
,
X.
, and
Wang
,
Y.
,
2004
, “
Multi-Chain Digital Element Analysis in Textile Mechanics
,”
Compos. Sci. Technol.
,
64
(
2
), pp.
239
244
.10.1016/S0266-3538(03)00258-6
40.
Johnson
,
G. R.
,
Petersen
,
E. H.
, and
Stryk
,
R. A.
,
1993
, “
Incorporation of an SPH Option Into the EPIC Code for a Wide Range of High Velocity Impact Computations
,”
Int. J. Impact Eng.
,
14
(
1–4
), pp.
385
394
.10.1016/0734-743X(93)90036-7
41.
Bohannan
,
A.
, and
Fahrenthold
,
E.
,
2008
, “
Hypervelocity Impact Simulation Using Membrane Particle-Elements
,”
Int. J. Impact Eng.
,
35
(
12
), pp.
1497
1502
.10.1016/j.ijimpeng.2008.07.030
42.
Fahrenthold
,
E. P.
, and
Park
,
Y.-K.
,
2003
, “
Simulation of Hypervelocity Impact on aluminum-Nextel-Kevlar Orbital Debris Shields
,”
Int. J. Impact Eng.
,
29
(
1–10
), pp.
227
235
.10.1016/j.ijimpeng.2003.09.018
43.
Fahrenthold
,
E. P.
, and
Hernandez
,
R. J.
,
2006
, “
Simulation of Orbital Debris Impact on the Space Shuttle Wing Leading Edge
,”
Int. J. Impact Eng.
,
33
(
1–12
), pp.
231
243
.10.1016/j.ijimpeng.2006.09.080
44.
Park
,
Y.-K.
, and
Fahrenthold
,
E. P.
,
2006
, “
Simulation of Hypervelocity Impact Effects on Reinforced Carbon-Carbon
,”
J. Spacecr. Rockets
,
43
(
1
), pp.
200
206
.10.2514/1.14245
45.
Son
,
K. J.
, and
Fahrenthold
,
E. P.
,
2014
, “
Simulation of Orbital Debris Impact on Porous Ceramic Tiles
,”
J. Spacecr. Rockets
,
51
(
4
), pp.
1349
1359
.10.2514/1.A32658
46.
Shivarama
,
R.
, and
Fahrenthold
,
E. P.
,
2004
, “
An Ellipsoidal Particle–Finite Element Method for Hypervelocity Impact Simulation
,”
Int. J. Numer. Methods Eng.
,
59
(
5
), pp.
737
753
.10.1002/nme.903
47.
Drumheller
,
D. S.
,
1987
, “
Hypervelocity Impact of Mixtures
,”
Int. J. Impact Eng.
,
5
(
1–4
), pp.
261
268
.10.1016/0734-743X(87)90043-1
48.
Jolly
,
M. R.
,
Carlson
,
J. D.
, and
Muñoz
,
B. C.
,
1996
, “
A Model of the Behaviour of Magnetorheological Materials
,”
Smart Mater. Struct.
,
5
(
5
), pp.
607
614
.10.1088/0964-1726/5/5/009
49.
Spencer
,
B. F.
,
Dyke
,
S. J.
,
Sain
,
M. K.
, and
Carlson
,
J. D.
,
1997
, “
Phenomenological Model for Magnetorheological Dampers
,”
J. Eng. Mech.
,
123
(
3
), pp.
230
238
.10.1061/(ASCE)0733-9399(1997)123:3(230)
50.
Genç
,
S.
, and
Phulé
,
P. P.
,
2002
, “
Rheological Properties of Magnetorheological Fluids
,”
Smart Mater. Struct.
,
11
(
1
), pp.
140
146
.10.1088/0964-1726/11/1/316
51.
Rabbani
,
Y.
,
Ashtiani
,
M.
, and
Hassan Hashemabadi
,
S.
,
2015
, “
An Experimental Study on the Effects of Temperature and Magnetic Field Strength on the Magnetorheological Fluid Stability and MR Effect
,”
Soft Matter
,
11
(
22
), pp.
4453
4460
.10.1039/C5SM00625B
52.
Shivarama
,
R.
, and
Fahrenthold
,
E. P.
,
2004
, “
Hamilton's Equations With Euler Parameters for Rigid Body Dynamics Modeling
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
1
), pp.
124
130
.10.1115/1.1649977
You do not currently have access to this content.