Abstract

Efficient passive vibration absorption can prevent the failure of systems without requiring sensors or energy sources. Nonlinear energy sinks (NES) have gained popularity as passive vibration absorbers due to their targeted energy transfer (TET) mechanisms that extract and dissipate vibrational energy over broad frequency ranges. In this work, the vibration suppression performance of a novel bistable rotary nonlinear energy sink (BRNES) is studied numerically in the cases of impulse and harmonic excitation. The BRNES consists of a secondary mass that connects to the primary system by a rigid arm and spring that pivot at each connection point. The spring produces an irrational nonlinear restoring force that introduces bistability and favorable oscillatory TET mechanisms. The BRNES outperforms the traditional rotary NES and, in some cases, even the bistable NES. Moreover, unlike most NESs restricted to rectilinear motion, the BRNES is efficient at multiple orientations, thus demonstrating its potential to passively suppress vibrations in any in-plane direction over broad excitation magnitude and frequency ranges.

References

1.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Courier Corporation, North Chelmsford, MA
.
2.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer
, Berlin.
3.
Gendelman
,
O.
,
Starosvetsky
,
Y.
, and
Feldman
,
M.
,
2008
, “
Attractors of Harmonically Forced Linear Oscillator With Attached Nonlinear Energy Sink I: Description of Response Regimes
,”
Nonlinear Dyn.
,
51
(
1–2
), pp.
31
46
.10.1007/s11071-006-9167-0
4.
Manevitch
,
L. I.
, and
Smirnov
,
V. V.
,
2010
, “
Limiting Phase Trajectories and the Origin of Energy Localization in Nonlinear Oscillatory Chains
,”
Phys. Rev. E
,
82
(
3
), p.
036602
.10.1103/PhysRevE.82.036602
5.
Gendelman
,
O. V.
, and
Starosvetsky
,
Y.
,
2006
, “
Quasi-Periodic Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink Under Periodic Forcing
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
325
331
.10.1115/1.2198546
6.
Starosvetsky
,
Y.
, and
Gendelman
,
O.
,
2008
, “
Attractors of Harmonically Forced Linear Oscillator With Attached Nonlinear Energy Sink. II: Optimization of a Nonlinear Vibration Absorber
,”
Nonlinear Dyn.
,
51
(
1–2
), pp.
47
57
.10.1007/s11071-006-9168-z
7.
Kerschen
,
G.
,
Lee
,
Y. S.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
, and
Bergman
,
L. A.
,
2005
, “
Irreversible Passive Energy Transfer in Coupled Oscillators With Essential Nonlinearity
,”
SIAM J. Appl. Math.
,
66
(
2
), pp.
648
679
.10.1137/040613706
8.
Gendelman
,
O.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M'Closkey
,
R.
,
2000
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part I'Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
.10.1115/1.1345524
9.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2000
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part II-Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.10.1115/1.1345525
10.
Gendelman
,
O. V.
,
2008
, “
Targeted Energy Transfer in Systems With Non-Polynomial Nonlinearity
,”
J. Sound Vib.
,
315
(
3
), pp.
732
745
.10.1016/j.jsv.2007.12.024
11.
Nucera
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Kerschen
,
G.
,
2007
, “
Targeted Energy Transfers in Vibro-Impact Oscillators for Seismic Mitigation
,”
Nonlinear Dyn.
,
50
(
3
), pp.
651
677
.10.1007/s11071-006-9189-7
12.
Farid
,
M.
, and
Gendelman
,
O.
,
2018
, “
Response Regimes in Equivalent Mechanical Model of Moderately Nonlinear Liquid Sloshing
,”
Nonlinear Dyn.
,
92
(
4
), pp.
1517
1538
.10.1007/s11071-018-4144-y
13.
Sigalov
,
G.
,
Gendelman
,
O.
,
Al-Shudeifat
,
M.
,
Manevitch
,
L.
,
Vakakis
,
A.
, and
Bergman
,
L.
,
2012
, “
Resonance Captures and Targeted Energy Transfers in an Inertially-Coupled Rotational Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
69
(
4
), pp.
1693
1704
.10.1007/s11071-012-0379-1
14.
Wang
,
G.-X.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2021
, “
Nonlinear Normal Modes and Optimization of a Square Root Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
104
(
2
), pp.
1069
1096
.10.1007/s11071-021-06334-1
15.
Liu
,
Y.
,
Mojahed
,
A.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2019
, “
A New Way to Introduce Geometrically Nonlinear Stiffness and Damping With an Application to Vibration Suppression
,”
Nonlinear Dyn.
,
96
(
3
), pp.
1819
1845
.10.1007/s11071-019-04886-x
16.
Manevitch
,
L. I.
,
Sigalov
,
G.
,
Romeo
,
F.
,
Bergman
,
L. A.
, and
Vakakis
,
A.
,
2013
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Analytical Study
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041011
.10.1115/1.4025150
17.
Romeo
,
F.
,
Sigalov
,
G.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2014
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Numerical Study
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011007
.10.1115/1.4027224
18.
Wu
,
Z.
,
Seguy
,
S.
, and
Paredes
,
M.
,
2021
, “
Basic Constraints for Design Optimization of Cubic and Bistable Nonlinear Energy Sink
,”
ASME J. Vib. Acoust.
,
144
(
2
), p.
021003
.10.1115/1.4051548
19.
Li
,
H.
,
Li
,
A.
, and
Kong
,
X.
,
2021
, “
Design Criteria of Bistable Nonlinear Energy Sink in Steady-State Dynamics of Beams and Plates
,”
Nonlinear Dyn.
,
103
(
2
), pp.
1475
1497
.10.1007/s11071-020-06178-1
20.
Wu
,
Z.
,
Seguy
,
S.
, and
Paredes
,
M.
,
2022
, “
Qualitative Analysis of the Response Regimes and Triggering Mechanism of Bistable NES
,”
Nonlinear Dyn.
,
109
(
2
), pp.
323
352
.10.1007/s11071-022-07609-x
21.
Wu
,
Z.
,
Seguy
,
S.
, and
Paredes
,
M.
,
2022
, “
Estimation of Energy Pumping Time in Bistable Nonlinear Energy Sink and Experimental Validation
,”
ASME J. Vib. Acoust.
,
144
(
5
), p.
051004
.10.1115/1.4054253
22.
Dekemele
,
K.
,
Van Torre
,
P.
, and
Loccufier
,
M.
,
2019
, “
Performance and Tuning of a Chaotic bi-Stable NES to Mitigate Transient Vibrations
,”
Nonlinear Dyn.
,
98
(
3
), pp.
1831
1851
.10.1007/s11071-019-05291-0
23.
Gendelman
,
O. V.
,
Sigalov
,
G.
,
Manevitch
,
L. I.
,
Mane
,
M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2011
, “
Dynamics of an Eccentric Rotational Nonlinear Energy Sink
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011012
.10.1115/1.4005402
24.
Al-Shudeifat
,
M. A.
,
Wierschem
,
N. E.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2017
, “
Numerical and Experimental Investigations of a Rotating Nonlinear Energy Sink
,”
Meccanica
,
52
(
4–5
), pp.
763
779
.10.1007/s11012-016-0422-2
25.
Saeed
,
A. S.
,
Al-Shudeifat
,
M. A.
, and
Vakakis
,
A. F.
,
2019
, “
Rotary-Oscillatory Nonlinear Energy Sink of Robust Performance
,”
Int. J. Non-Linear Mech.
,
117
, p.
103249
.10.1016/j.ijnonlinmec.2019.103249
26.
Saeed
,
A. S.
,
Al-Shudeifat
,
M. A.
,
Vakakis
,
A. F.
, and
Cantwell
,
W. J.
,
2020
, “
Rotary-Impact Nonlinear Energy Sink for Shock Mitigation: Analytical and Numerical Investigations
,”
Arch. Appl. Mech.
,
90
(
3
), pp.
495
521
.10.1007/s00419-019-01622-0
27.
Vorotnikov
,
K.
, and
Starosvetsky
,
Y.
,
2015
, “
Nonlinear Energy Channeling in the Two-Dimensional, Locally Resonant, Unit-Cell Model. I. High Energy Pulsations and Routes to Energy Localization
,”
Chaos: Interdiscip. J. Nonlinear Sci.
,
25
(
7
), p.
073106
.10.1063/1.4922964
28.
Vorotnikov
,
K.
, and
Starosvetsky
,
Y.
,
2015
, “
Nonlinear Energy Channeling in the Two-Dimensional, Locally Resonant, Unit-Cell Model. II. Low Energy Excitations and Unidirectional Energy Transport
,”
Chaos: Interdiscip. J. Nonlinear Sci.
,
25
(
7
), p.
073107
.10.1063/1.4922965
29.
Jayaprakash
,
K.
, and
Starosvetsky
,
Y.
,
2017
, “
Three-Dimensional Energy Channeling in the Unit-Cell Model Coupled to a Spherical Rotator I: Bidirectional Energy Channeling
,”
Nonlinear Dyn.
,
89
(
3
), pp.
2013
2040
.10.1007/s11071-017-3568-0
30.
Jayaprakash
,
K.
, and
Starosvetsky
,
Y.
,
2017
, “
Three-Dimensional Energy Channeling in the Unit-Cell Model Coupled to a Spherical Rotator II: Unidirectional Energy Channeling
,”
Nonlinear Dyn.
,
89
(
4
), pp.
2311
2327
.10.1007/s11071-017-3587-x
31.
Cao
,
Q.-J.
,
Han
,
N.
, and
Tian
,
R.-L.
,
2011
, “
A Rotating Pendulum Linked by an Oblique Spring
,”
Chin. Phys. Lett.
,
28
(
6
), p.
060502
.10.1088/0256-307X/28/6/060502
32.
Han
,
N.
, and
Cao
,
Q.
,
2016
, “
Global Bifurcations of a Rotating Pendulum With Irrational Nonlinearity
,”
Commun. Nonlinear Sci. Numer. Simul.
,
36
, pp.
431
445
.10.1016/j.cnsns.2015.12.009
33.
Han
,
N.
, and
Cao
,
Q.
,
2017
, “
A Parametrically Excited Pendulum With Irrational Nonlinearity
,”
Int. J. Non-Linear Mech.
,
88
, pp.
122
134
.10.1016/j.ijnonlinmec.2016.10.018
34.
Han
,
N.
,
Lu
,
P.
, and
Li
,
Z.
,
2021
, “
An Approximate Technique to Test Chaotic Region in a Rotating Pendulum System With Bistable Characteristics
,”
Nonlinear Dyn.
,
104
(
1
), pp.
191
214
.10.1007/s11071-021-06274-w
35.
Liu
,
C.
,
Jing
,
X.
,
Jiang
,
W.
,
Ding
,
H.
,
Chen
,
L.
, and
Bi
,
Q.
,
2023
, “
Bursting Oscillation of a Pendulum With Irrational Nonlinearity
,”
Int. J. Non-Linear Mech.
,
148
, p.
104299
.10.1016/j.ijnonlinmec.2022.104299
36.
Gourc
,
E.
,
Michon
,
G.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2014
, “
Experimental Investigation and Design Optimization of Targeted Energy Transfer Under Periodic Forcing
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021021
.10.1115/1.4026432
37.
Haxton
,
R. S.
, and
Barr
,
A. D. S.
,
1972
, “
The Autoparametric Vibration Absorber
,”
ASME J. Eng. Ind.
,
94
(
1
), pp.
119
125
.10.1115/1.3428100
You do not currently have access to this content.