Abstract

Gear drive is one of the most widely used transmission forms. Its vibration analysis plays an important role in design and operation. Considering the gear meshing resonance phenomenon (MRP), the paper analyzes the influences of rotating speed and load on meshing resonance intensity (MRI). Based on the gear meshing impact mechanism, meshing force variation during the engagement process were obtained. It was considered as meshing impacts exerted on the gear system. By comparing the maximum meshing force under different circumstances, it was found that rotating speeds and loads were positively related to meshing forces. The vibration signals with different load torques and rotating speeds obtained from the gear pair were analyzed. The experiment results showed that the intensity of meshing impact increased with the increases of both rotating speed and load. It was also observed that due to the MRP, the gear meshing frequency was modulated to the resonance frequency band as meshing impacts. Consequently, the resonance frequency band contained most of the energy of the meshing impact. An indicator called resonance energy ratio (RER) was defined to represent the proportion of resonance energy due to meshing impact. The simulation and experiment result show that the proposed RER indicator can well assess the intensity of the vibration. By comparing the RER values of 20 sets of gear vibration data, the influences of rotating speed and load on MRI were discussed. The result shows that the proposed method is helpful to the vibration assessment and condition monitoring in different operational states.

Graphical Abstract Figure

The calculation model of meshing force at (a) initial meshing point D and (b) an arbitrary m

Graphical Abstract Figure

The calculation model of meshing force at (a) initial meshing point D and (b) an arbitrary m

Close modal

References

1.
Tang
,
H.
,
Chen
,
J.
, and
Dong
,
G.
,
2014
, “
Sparse Representation Based Latent Components Analysis for Machinery Weak Fault Detection
,”
Mech. Syst. Signal Process.
,
46
(
2
), pp.
373
388
.10.1016/j.ymssp.2014.01.011
2.
Vachtsevanos
,
G.
,
Lewis
,
F.
,
Roemer
,
M.
,
Hess
,
A.
, and
Wu
,
B.
,
2007
,
Intelligent Fault Diagnosis and Prognosis for Engineering Systems
, Wiley, Hoboken, NJ, pp.
1
434
.
3.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1483
1510
.10.1016/j.ymssp.2005.09.012
4.
He
,
B.
,
Huang
,
S.
, and
He
,
X.
,
2014
, “
Numerical Simulation of Gear Surface Hardening Using the Finite Element Method
,”
Int. J. Adv. Manuf. Technol.
,
74
(
5–8
), pp.
665
672
.10.1007/s00170-014-6017-y
5.
Guo
,
F.
, and
Fang
,
Z.-D.
,
2019
, “
A New Algorithm to Solve Meshing-In Impact Considering the Measured Pitch Error and to Investigate Its Influence on the Dynamic Characteristics of a Gear System
,”
Int. J. Precis. Eng. Manuf.
,
20
(
3
), pp.
395
406
.10.1007/s12541-019-00047-7
6.
Bonori
,
G.
, and
Pellicano
,
F.
,
2007
, “
Non-Smooth Dynamics of Spur Gears With Manufacturing Errors
,”
J. Sound Vib.
,
306
(
1–2
), pp.
271
283
.10.1016/j.jsv.2007.05.013
7.
Mu
,
Y.
,
Fang
,
Z.
, and
Li
,
W.
,
2019
, “
Impact Analysis and Vibration Reduction Design of Spiral Bevel Gears
,”
Proc. Inst. Mech. Eng., Part K
,
233
(
3
), pp.
668
676
.10.1177/1464419319827398
8.
Rigaud
,
E.
, and
Perret-Liaudet
,
J.
,
2020
, “
Investigation of Gear Rattle Noise Including Visualization of Vibro-Impact Regimes
,”
J. Sound Vib.
,
467
, p.
115026
.10.1016/j.jsv.2019.115026
9.
Tang
,
J. Y.
,
Liu
,
X.
, and
Dai
,
J.
,
2007
, “
Study on Corner Contact Shock of Gear Transmission by ANSYS/LS-DYNA Software
,”
J. Vib. Shock
,
26
(
9
), pp.
40
44, 50
.https://www.researchgate.net/publication/289703323_Study_on_corner_contact_shock_of_gear_transmission_by_ANSYSLS-DYNA_software
10.
Hu
,
Y.
,
Shao
,
Y.
,
Chen
,
Z.
, and
Zuo
,
M. J.
,
2011
, “
Transient Meshing Performance of Gears With Different Modification Coefficients and Helical Angles Using Explicit Dynamic FEA
,”
Mech. Syst. Signal Process.
,
25
(
5
), pp.
1786
1802
.10.1016/j.ymssp.2010.12.004
11.
Guangjian
,
W.
,
Lin
,
C.
,
Li
,
Y.
, and
Shuaidong
,
Z.
,
2017
, “
Research on the Dynamic Transmission Error of a Spur Gear Pair With Eccentricities by Finite Element Method
,”
Mech. Mach. Theory
,
109
, pp.
1
13
.10.1016/j.mechmachtheory.2016.11.006
12.
Amabili
,
M.
, and
Rivola
,
A.
,
1997
, “
Dynamic Analysis of Spur Gear Pairs: Steady-State Response and Stability of the Sdof Model With Time-Varying Meshing Damping
,”
Mech. Syst. Signal Process.
,
11
(
3
), pp.
375
390
.10.1006/mssp.1996.0072
13.
Amabili
,
M.
, and
Fregolent
,
A.
,
1998
, “
A Method to Identify Modal Parameters and Gear Errors by Vibrations of a Spur Gear Pair
,”
J. Sound Vib.
,
214
(
2
), pp.
339
357
.10.1006/jsvi.1998.1587
14.
Yu
,
W.
,
Mechefske
,
C. K.
, and
Timusk
,
M.
,
2017
, “
Influence of the Addendum Modification on Spur Gear Back-Side Mesh Stiffness and Dynamics
,”
J. Sound Vib.
,
389
, pp.
183
201
.10.1016/j.jsv.2016.11.030
15.
Bonori
,
G.
,
Barbieri
,
M.
, and
Pellicano
,
F.
,
2008
, “
Optimum Profile modifications of spur Gears by Means of Genetic Algorithms
,”
J. Sound Vib.
,
313
(
3–5
), pp.
603
616
.10.1016/j.jsv.2007.12.013
16.
Faggioni
,
M.
,
Samani
,
F. S.
,
Bertacchi
,
G.
, and
Pellicano
,
F.
,
2011
, “
Dynamic Optimization of Spur Gears
,”
Mech. Mach. Theory
,
46
(
4
), pp.
544
557
.10.1016/j.mechmachtheory.2010.11.005
17.
Wang
,
J.
, and
Lim
,
T. C.
,
2009
, “
Effect of Tooth Mesh Stiffness Asymmetric Nonlinearity for Drive and Coast Sides on Hypoid Gear Dynamics
,”
J. Sound Vib.
,
319
(
3–5
), pp.
885
903
.10.1016/j.jsv.2008.06.021
18.
Chen
,
Z.
, and
Shao
,
Y.
,
2013
, “
Mesh Stiffness of an Internal Spur Gear Pair With Ring Gear Rim Deformation
,”
Mech. Mach. Theory
,
69
, pp.
1
12
.10.1016/j.mechmachtheory.2013.04.017
19.
Shi
,
J. F.
,
Gou
,
X. F.
, and
Zhu
,
L. Y.
,
2019
, “
Modeling and Analysis of a Spur Gear Pair Considering Multi-State Mesh With Time-Varying Parameters and Backlash
,”
Mech. Mach. Theory
,
134
, pp.
582
603
.10.1016/j.mechmachtheory.2019.01.018
20.
Wang
,
T.
,
Chu
,
F.
, and
Han
,
Q.
,
2017
, “
Fault Diagnosis for Wind Turbine Planetary Ring Gear Via a Meshing Resonance Based Filtering Algorithm
,”
ISA Trans.
,
67
, pp.
173
182
.10.1016/j.isatra.2016.11.008
21.
Tong
,
S.
,
Huang
,
Y.
,
Jiang
,
Y.
,
Weng
,
Y.
,
Tong
,
Z.
,
Tang
,
N.
, and
Cong
,
F.
,
2019
, “
The Identification of Gearbox Vibration Using the Meshing Impacts Based Demodulation Technique
,”
J. Sound Vib.
,
461
, p.
114879
.10.1016/j.jsv.2019.114879
22.
Wang
,
T.
,
Chu
,
F.
,
Han
,
Q.
, and
Kong
,
Y.
,
2017
, “
Compound Faults Detection in Gearbox Via Meshing Resonance and Spectral Kurtosis Methods
,”
J. Sound Vib.
,
392
, pp.
367
381
.10.1016/j.jsv.2016.12.041
23.
Wang
,
T.
,
Chu
,
F.
, and
Feng
,
Z.
,
2018
, “
Meshing Frequency Modulation (MFM) Index-Based Kurtogram for Planet Bearing Fault Detection
,”
J. Sound Vib.
,
432
, pp.
437
453
.10.1016/j.jsv.2018.06.051
24.
Kong
,
Y.
,
Wang
,
T.
, and
Chu
,
F.
,
2019
, “
Meshing Frequency Modulation Assisted Empirical Wavelet Transform for Fault Diagnosis of Wind Turbine Planetary Ring Gear
,”
Renewable Energy
,
132
, pp.
1373
1388
.10.1016/j.renene.2018.09.027
25.
Yang
,
D. C. H.
, and
Lin
,
J. Y.
,
1987
, “
Hertzian Damping, Tooth Friction and Bending Elasticity in Gear Impact Dynamics
,”
ASME J. Mech., Transm., Autom. Des.
,
109
(
2
), pp.
189
196
.10.1115/1.3267437
26.
Tian
,
X.
,
2004
,
Dynamic Simulation for System Response of Gearbox Including Localized Gear Faults
,
University of Alberta
,
Canada
.
27.
Sainsot
,
P.
,
Velex
,
P.
, and
Duverger
,
O.
,
2004
, “
Contribution of Gear Body to Tooth deflections - A New Bidimensional Analytical Formula
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
748
752
.10.1115/1.1758252
28.
Chen
,
Z.
, and
Shao
,
Y.
,
2011
, “
Dynamic Simulation of Spur Gear With Tooth Root Crack Propagating Along Tooth Width and Crack Depth
,”
Eng. Failure Anal.
,
18
(
8
), pp.
2149
2164
.10.1016/j.engfailanal.2011.07.006
29.
Liang
,
X.
,
Zuo
,
M. J.
, and
Patel
,
T. H.
,
2014
, “
Evaluating the Time-Varying Mesh Stiffness of a Planetary Gear Set Using the Potential Energy Method
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
3
), pp.
535
547
.10.1177/0954406213486734
30.
Seireg
,
A.
, and
Houser
,
D. R.
,
1970
, “
Evaluation of Dynamic Factors for Spur and Helical Gears
,”
ASME J. Manuf. Sci. Eng.
,
92
(
2
), pp.
504
514
.10.1115/1.3427790
31.
Feng
,
W.
,
Xing
,
X.
, and
Zong-De
,
F.
,
2017
, “
New Method With Experimental Validation for Power Transmission Process Analysis on Herringbone Gear Train System
,”
Int. J. Acoust. Vib.
,
22
, pp.
519
535
.10.20855/ijav.2017.22.4499
32.
Hu
,
S.
,
Fang
,
Z.
,
Liu
,
C.
, and
Xiang
,
L.
,
2019
, “
Measurements and Theoretical Analysis of a Helical Gear Meshing Impact Signal
,”
Proc. Inst. Mech. Eng., Part K
,
233
(
4
), pp.
827
839
.10.1177/1464419319853435
33.
Wang
,
F.
,
2014
,
Dynamic Characteristics Research and Experimental Study on Herringbone Gear Drive System
,
Northwestern Polytechnical University
, Xi'an City, Shanxi Province, China.
34.
Yu
,
J.
,
1994
,
Diagnosis, Identification and Control of Machining Vibration
,
Tsinghua University Press
,
Beijing
.
35.
Wang
,
W.
,
2001
, “
Early Detection of Gear Tooth Cracking Using the Resonance Demodulation Technique
,”
Mech. Syst. Signal Process.
,
15
(
5
), pp.
887
903
.10.1006/mssp.2001.1416
You do not currently have access to this content.